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Abstract

This paper examines how the business cycle impacts the average quality of an employer-
employee match. I study a model of the labor market with on-the-job search, aggregate
uncertainty, and heterogeneous match qualities. I test two theories: the cleansing effect,
whereby the low quality matches are destroyed during recessions, and the sullying effect,
whereby firms post fewer vacancies during recessions and workers have fewer opportu-
nities to move up the job ladder. I find that the sullying effect dominates and that av-
erage match quality is procyclical due to increased hiring out of unemployment during
recessions. I extend the model to allow for an exogenous minimum wage and show that
neglecting to account for the cyclicality of match qualities can lead to miscalculating the
effects of the policy.
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Introduction

Is the average quality of an employer-employee match procyclical? How does the business
cycle affect the distribution of match qualities in the economy? Does this vary across worker
characteristics such as educational attainment? If so, what are the welfare implications for the
evaluation and implementation of labor market policies?

To answer these questions, I study a model of the labor market with several key features
which allow me to capture the effects of recessions on average match quality, as well as study
the reallocation of workers and firms over the business cycle. First, workers and firms form
matches which differ by their quality, assumed to be time invariant. Second, on-the-job search
ensures that workers are constantly searching for better opportunities. This induces a job lad-
der in match quality, i.e. workers endogenously sort into better matches over time as they
receive poaching offers from competing firms. Job duration is thus increasing in match qual-
ity, with workers unwilling to accept poaching offers from firms which would yield a lower
match quality. Third, aggregate uncertainty is governed by a productivity shock which affects
the per period output of a given match. Lastly, I allow for endogenous separations so that only
matches which are jointly profitable to the worker and to the firm are created and retained.
This decision crucially depends on the joint value of a match, which is a function of the match
quality and the aggregate state of the economy today, as well as what is expected to happen to
the worker and the firm next period, and into the future.

Next, I partition the labor market by workers’ educational attainment and separately es-
timate the model for each group. The model parameters are jointly estimated using the Sim-
ulated Method of Moments with data from the Current Population Survey during the period
Dec2001-Dec2019.

I use the estimated model to analyze the cyclicality of the average match quality in the
economy. Two forces in the model impact its cyclicality. First, the Schumpeterian cleansing
effect1, the idea that recessions consist in a destruction of the worst matches and a sorting of
workers to better matches, translates to an increase in the average match quality. Second, the
sullying effect coined by Barlevy (2002), the idea that recessions impede reallocation because
firms post fewer vacancies and workers cannot sort into better jobs as easily, implies a decrease
in the average match quality. I find that average match quality, as measured by its correlation
with unemployment, is strongly procyclical across all education groups.

To understand why the sullying effect dominates and how both effects are present in the
model, I simulate the transition path back to the steady state equilibrium following an unex-
pected one-period negative shock to productivity. At impact of the negative shock, dispropor-
tionately more low matches are separated than high matches because of endogenous separa-
tions. Thus, the average match quality initially increases. However, as the number of vacancies
posted by firms recovers, so does hiring. I find that hiring out of unemployment dominates
hiring out of employment and since, on average, matches hired out of unemployment are of

1Schumpeter viewed recessions as a time where resources get efficiently reallocated to more productive uses.
In Schumpeter (1942), he describes this as a process “that incessantly revolutionizes the economic structure from
within, incessantly destroying the old one, incessantly creating a new one. This process of Creative Destruction is
the essential fact about capitalism."
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lower quality due to selection, the average match quality decreases.
I then explore how the strengths of the sullying and cleansing effects depend on the depth

of the recession. To do so, I look at periods where the productivity level decreases, what I
refer to as a recession in the context of the model, and, in addition, condition on the level of
aggregate productivity. This is to capture the possibility that a decrease in aggregate conditions
from the best to second-best state is inherently different than a decrease from the second-worst
to the worst state. I find that in periods where the latter holds, both the cleansing and sullying
effects are present and it is not clear which dominates. However, as the severity of the recession
decreases, the cleansing effect becomes less prominent. This relationship holds regardless of
education.

To further understand the mechanisms impacting the cyclicality of the average match qual-
ity, I study its interaction with the level of mismatch in the economy. Since the model is written
in terms of match quality, there is a clear notion of mismatch: all workers who are not in the
highest quality matches, and thus producing less than they would in the best matches, are
deemed to be mismatched. I introduce three measures of mismatch and analyze how they
depend on the business cycle and interact with average match quality. All three measures are
strongly countercyclical and decreasing in educational attainment.

Finally, I extend the model to allow for an exogenous minimum wage policy. I study its ef-
fects on both the stationary and stochastic versions of the model. In the stationary model, there
is a large employment effect: total employment strongly decreases in the presence of a min-
imum wage. This decrease is especially large for the lower educated groups which are most
impacted by the policy. I study how employment and the percent of the employed who re-
ceive the minimum wage vary across the cycle and by education. I then study the introduction
of the minimum wage policy in the full stochastic model, which, in contrast to the stationary
version, has time varying average match quality. I explore its relationship with the effects of
the minimum wage policy. Neglecting to account for a procyclical average match quality can
lead to miscalculating the effects of the policy.

Related Literature. This paper is not the first to think about the cyclicality of match quality.
Several empirical papers, dating back to Bowlus (1995), and more recently Foster, Grim, and
Haltiwanger (2016), Mustre-del Rio (2019), and Baydur and Mukoyama (2020), proxy the qual-
ity of a match by its duration and find that it is procyclical. However, as noted by Mustre-del
Rio (2019), measuring match quality as job duration has important limitations which lead to
biased estimates of its cyclicality. Other studies, such as the influential works of Kahn (2010)
and Oreopoulos, von Wachter, and Heisz (2012), use the wage as a proxy for match quality and
find that labor market earnings are lower for workers who join the labor force during reces-
sions. This paper contributes to this strand of the literature by providing a structural estimate
of the cyclicality of the average match quality without needing to rely on imperfect measures
of the quality of a match.

This paper also relates to a branch of the literature studying mismatch in the labor market.
Of those, this paper is closest to Baley, Figueiredo, and Ulbricht (2021) who also study a frame-
work that allows for the coexistence of both the cleansing and sullying effects. Their focus is
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on average mismatch, which they find to be procyclical thus implying that the cleansing effect
dominates.

Furthermore, this paper contributes to a large literature interested in reallocation over the
business cycle which studies models of the labor market with both aggregate uncertainty and
two-sided heterogeneity (see, e.g., amongst many others, Burdett and Mortensen, 1998; Bar-
levy, 2002; Postel-Vinay and Robin, 2002; Menzio and Shi, 2011; Moscarini and Postel-Vinay,
2013; Lise and Robin, 2017; and Schaal, 2017). Of these, the model is closest to that of Barlevy
(2002) with a couple distinctions which I discuss in the previous section.

Finally, this paper relates to a growing literature studying the effects of a binding minimum
wage policy. It is closest to Flinn (2006) with the main difference being that I not only study
the effects of a minimum wage in a stationary environment, but also in the case where there is
aggregate uncertainty.

Outline. The rest of the paper is organized as follows: Section 1 presents the model environ-
ment. Section 2 describes the data and estimation procedure Section 3 explores the the effects
of the business cycle on the average match quality. Section 4 extends the model to allow for
an exogenous minimum wage and analyzes its effects in both the stationary and stochastic
versions of the model. Section 5 concludes.

1 Model

In this section, I present a model of the labor market with heterogeneous match quality, aggre-
gate uncertainty, and on-the-job search. The model is closest to the one developed by Barlevy
(2002) with a few distinctions. First, the only heterogeneity present in the model is through
the quality of a match. Barlevy (2002) has two-sided heterogeneity and shows that under a
particular set of assumptions2 the model can be written in terms of match quality. I directly
write the model in terms of match quality since that is the object of interest in this paper and it
allows me to avoid making a similar set of assumptions. Second, I maintain Nash bargaining
throughout whereas he assumes wages take the form of a piece-rate on output. This ensures
that all decisions are jointly efficient between the worker and the firm. Imposing an exoge-
nous wage would result in inefficient separations and bias the cyclicality of the average match
quality. Third, I assume the quality of a match follows a Zipf distribution, the discrete analog
of a Pareto distribution with a finite support. This is a generalisation of Barlevy (2002) who
has a uniform distribution and makes it so there is less bunching at the top of the distribu-
tion of workers across match qualities. Finally, I allow the value of home production to vary
across states to allow for the possibility that the opportunity cost of employment is different in
recessions and in booms which also impacts the cyclicality of the average match quality.

2He assumes that worker and firm types take on the same number of values and worker types are uniformly
distributed. Furthermore, he makes a functional form assumption on the mapping from worker and firm types to
the quality of a match, similar to the one in Marimon and Zilibotti (1999). All these assumptions make the value
functions independent of the distributions of workers and firms across types. Finally, he only considers symmetric
equilibria where firms post the same number of vacancies.
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1.1 Model environment

Environment. Time is discrete and indexed by t ∈ {1, 2, 3, . . . }. The economy is populated by
a unit mass of workers and firms. The state of the economy in t is given by (st, et) where st is
aggregate productivity with transition probability π(st+1|st) and et : {1, 2, . . . , N} → [0, 1] is a
function with et(n) denoting the measure of workers in matches of quality n.

Matching. Let vt denote the number of vacancies posted and ut the measure of unemployed
workers in period t. Note that,

ut +
N

∑
n=1

et(n) = 1, ∀t. (1)

Search is random and I assume all workers search. Hence, the market tightness in the econ-
omy is the number of vacancies posted by firms, θt = vt/1 = vt. The number of new matches
in period t is mt and given by a meeting function mt = m(1, vt), assumed to be increasing
in both arguments and constant returns to scale. The probability for a worker, irrespective of
employment status, of meeting a firm is p(θt) = m(1, vt)/1 = m(1, θt), where p(·) is strictly
increasing, strictly concave, p(0) = 0, and p(1) = 1. The probability for a firm of meeting
a worker is q(θt) = m(1, vt)/vt = m(1/θt, 1) = p(θt)/θt, where q(·) is strictly decreasing,
q(0) = 1, and q(1) = 0.

Match Quality. Upon meeting, a worker and firm pair draws a match quality according to a
Zipf distribution with shape parameter η ≥ 0 and support {1, 2, 3, . . . , N}. Hence, the worst
matches are of quality 1 and the best have quality N. The probability that a worker and firm
pair form a match quality of n is 1/

(
nη ∑N

k=1
1
kη

)
and is independent of the aggregate state of the

economy. When η = 0, this reduces to a uniform distribution. As η increases, the probability
of drawing a high match quality decreases. The match is consummated if and only if it is
jointly profitable to do so, i.e. if the total match surplus is positive. Note here that there is
no notion of learning about the quality of the match over time. As soon as the worker and
the firm meet, the quality is observable to both and it is time invariant. The only way for a
worker to be in a match of higher quality is to switch firms. Finally, although the distribution
from which workers and firms draw their match quality is stationary, the contact rates are not.
Indeed, they depend on the endogenous distribution of workers across match qualities and
vary across the cycle. So the total probability to the worker, for example, of forming a match
of quality n, given by the product 1

nη ∑N
k=1

1
kη

p(θ), will be time varying.

In the model, the only heterogeneity present is at the level of the match. To address this
restriction, in the quantitative section I partition the labor market by educational attainment
and estimate the model separately for each group. The assumption is then that there are no
flows between these different groups. I discuss this in more detail in Section 2.4.

1.2 Timing

The timing in the model within a period is illustrated in Figure 1. At the beginning of period t,
the distribution of workers across match qualities is inherited from the previous period t− 1.
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Figure 1: Within period timing

t t + 1

{et(n)}N
n=1, ut

inherited from t− 1
shock st
realized

separations
endog. + exog.

firms choose
θ(st, et+)

meetings
p(θ(st, et+)), q(θ(st, et+))

production
h(st), f (n, st)

Then the productivity shock st is realized. Next, matches are both exogenously separated at
rate δ and endogenously separated if the joint value of the match S(n, st, et) is negative. Firms
then observe the distribution of workers who survive separations across match qualities, given
by

et+(n) =

(1− δ)et(n) if S(n, st, et) ≥ 0

0 if S(n, st, et) < 0

= (1− δ)1{S(n, st, et) ≥ 0}et(n), ∀n

as well as the productivity shock and decide how many vacancies θ(st, et+) to post. Then meet-
ings occur at rates p(θ(st, et+)), q(θ(st, et+)) and the worker-firm pair draws a match quality.
Finally, production occurs with a match of quality n producing f (n, st) units of output and an
unemployed worker producing h(st). f (·) is assumed to be strictly increasing in n. Finally,
period t + 1 begins with {et+1(n)}N

n=1 and ut+1.
As opposed to the Diamond-Mortensen-Pissarides paradigm standard in the literature and

almost all search and matching models of the labor market, I allow home production to depend
on the state of the economy. This decision is first motivated by the fact that the value of f (n, s)
relative to h(s) will be crucial in determining which matches remain feasible during recessions
and so will have a direct impact on the cyclicality of the average match quality. Second, this
choice is aligned with Chodorow-Reich and Karabarbounis (2016) who provide convincing
evidence that the flow opportunity cost is strongly procyclical and hence not constant over
time.

1.3 Laws of motion

As in Lise and Robin (2017), I make the distinction between the stocks of employed and
unemployed workers right after the realization of st and the stocks at the end of the pe-
riod, after matching between workers and firms has occurred. Denote by ut+ the number
of workers who are unemployed following separations in period t. If a match is no longer
feasible in period t after the realization of st, it separates. Otherwise, it is exogenously de-
stroyed at rate δ. Therefore, the probability that a match of quality n separates in period t is
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1{S(n, st, et) < 0}+ δ1{S(n, st, et) ≥ 0}. ut+ thus evolves according to

ut+ = ut +
N

∑
n=1

et(n)
[

1{S(n, st, et) < 0}+ δ1{S(n, st, et) ≥ 0}
]

(2)

where the second term captures the number of workers flowing into unemployment from em-
ployment. The number of unemployed workers in t+ 1 is the number of unemployed workers
after separations who do not match with a firm. Therefore, the number of unemployed work-
ers in the economy follows the law of motion:

ut+1 = ut+

[
1− p(θ(st, et+))

N

∑
n=1

1
nη ∑N

k=1
1
kη

1{S(n, st, et) ≥ 0}︸ ︷︷ ︸
prob. receiving & accepting offer

]
. (3)

Finally, the law of motion for the stock of employed workers in matches of quality n is

et+1(n) =
(

1− p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
︸ ︷︷ ︸

prob. no poaching

et+(n) + 1
nη ∑N

k=1
1

kη
p(θ(st, et+))

(
1−∑N

k=n et+(k)
)

. (4)

The first term corresponds to workers inherited from the previous period, i.e. who do not
separate into unemployment or move up the job ladder. Once a worker survives separations,
they meet with a firm at rate p(θ(s, e+)) and only accepts an offer that grants them a higher
value than the continuation value of their current match. I assume that if a worker draws the
same quality n then they remain at their current firm.3 In Proposition 1, I show the model has
a job ladder in match quality and so this will only happen if they draw a match quality strictly
higher than their current one, i.e. from the set {n + 1, . . . , N}. The second term corresponds
to the inflow from other matches and unemployment. Because of the job ladder, only workers
in lower quality matches would accept an offer. All unemployed workers who contact a firm
move into employment if the worker surplus of the match is positive. So the number of work-
ers who would accept an offer of quality n is ut+ + ∑n−1

k=1 et+(k) = 1− ∑N
k=n et+(k), which is

increasing in n.

1.4 Value functions

Worker Value Functions. An unemployed worker produces h(s) units of output in the current
period. The next period, if they do not meet with a firm, which occurs with probability 1−
p(θ(s, e+)), they receive the continuation value of being unemployed. If they meet with a firm,
the match is of quality n with probability 1

/(
nη ∑N

k=1
1
kη

)
and is formed if and only if it is jointly

3This assumption can be micro-founded by introducing a switching cost. Moreover, it avoids the issue high-
lighted by Shimer (2006) on models with on-the-job search and Nash bargaining.

7



optimal. The value to a worker of being unemployed is then

U(s, e) = h(s) + βEs′|s

[(
1− p(θ(s, e+))

)
U(s′, e′)

+ p(θ(s, e+))
N

∑
n=1

1
nη ∑N

k=1
1
kη

max{W(n, s′, e′), U(s′, e′)}
]

where the expectation is taken over the productivity shock and W(n, s′, e′) is the value to the
worker of being employed in a match of quality n next period. Using the identity max{a, b} =
max{a− b, 0}+ b, this can be rewritten more concisely as

U(s, e) = h(s) + βEs′|s

[
U(s′, e′) + p(θ(s, e+))∑N

n=1
1

nη ∑N
k=1

1
kη

max{W(n, s′, e′)−U(s′, e′), 0}
]

. (5)

Here it is clear that next period, the worker receives the continuation value of unemployment
and, in addition, extracts the surplus from moving into employment if they receive and accept
an offer.

An employed worker is paid a wage w(n, s, e). The following period, they separate into
unemployment with probability 1− (1− δ)1{S(n, s′, e′) ≥ 0}4. If no separation occurs, they
either do not meet with a firm, in which case they receive the continuation value W(n, s′, e′), or
they meet with a firm and the match is formed if it is jointly optimal. I assume that if a worker I
show later that this occurs only when the worker meets with a firm and draws a strictly greater
match quality. The value to a worker of being employed in a match of quality n is thus

W(n, s, e) = w(n, s, e) + βEs′|s

[(
1− (1− δ)1{S(n, s′, e′) ≥ 0}

)
︸ ︷︷ ︸

prob. of a separation

U(s′, e′)

+ (1− δ)1{S(n, s′, e′) ≥ 0}︸ ︷︷ ︸
prob. of no separation

[(
1− p(θ(s, e+))

)
W(n, s′, e′)

+ p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′), W(n, s′, e′)}
]]

.

As with the value of unemployment, this expression can be rewritten as

W(n, s, e) = w(n, s, e) + βEs′|s

[
U(s′, e′) + (1− δ)1{S(n, s′, e′) ≥ 0}

(
W(n, s′, e′)−U(s′, e′)

)

+ (1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′)−W(n, s′, e′), 0}
]

.

(6)

4This is the same as the expression in Equation (2). To see this, note that the probability that the match survives
is

1−
(
1{S(n, s, e) < 0}+ δ1{S(n, s, e) ≥ 0}

)
=
(
1− 1{S(n, s, e) < 0}

)
− δ1{S(n, s, e) ≥ 0}

= 1{S(n, s, e) ≥ 0} − δ1{S(n, s, e) ≥ 0}
= (1− δ)1{S(n, s, e) ≥ 0}

Hence, the probability that the match separates is 1− (1− δ)1{S(n, s, e) ≥ 0}.
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This is an intuitive extension of Equation (5). An employed worker is paid a wage w(n, s, e)
and next period is guaranteed the value of unemployment plus the continuation value of the
worker surplus of their current match if there is no separation. In addition, they collects the
gains, relative to their current match, from potentially moving up the job ladder next period.

Firm Value Function. Finally, the value to a firm of a match of quality n is the output it
produces less the wage bill this period plus the expected continuation value of the match next
period, conditional on the match not getting separated and the worker not getting poached.
After separations have occurred, the worker makes an employment-to-employment transition
if and only if they meet with a firm and draws a match quality greater than n, which happens
with probability p(θ(s, e+))∑N

k=n+1
1
kη / ∑N

k=1
1
kη . The firm value function is thus

J(n, s, e) = f (n, s)− w(n, s, e)

+ βEs′|s

[
(1− δ)1{S(n, s′, e′) ≥ 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
J(n, s′, e′)

]
.

(7)

Vacancy creation. The value to a firm of a vacant match is equal to the cost κ of posting the
vacancy in the current period plus the expected profits of the vacancy. If the firm does not
meet with a worker, it receives the continuation value of the vacant match. The vacancy can
be filled by unemployed and employed workers. If the firm meets with an employed worker,
the match is formed if and only if the quality created is greater than the one the worker had
with their previous employer. As such, for a given match quality n, the number of workers in
the economy who would accept to form the match is ut+ + ∑n−1

l=1 et+(l). Hence, the value of a
vacant match to the firm is

V(s, e) = −κ +
(
1− q(θ(s, e+))

)
V(s, e)

+ q(θ(s, e+))
N

∑
n=1

1
nη ∑N

k=1
1
kη

(
ut+ +

n−1

∑
l=1

et+(l)
)

max{J(n, s, e), V(s, e)}.

Imposing free entry in equilibrium, i.e. V(s, e) = 0 ∀(s, e), yields the free entry condition

κ = q(θ(s, e+))
N

∑
n=1

1
nη ∑N

k=1
1
kη

(
ut+ +

n−1

∑
l=1

et+(l)
)

max{J(n, s, e), 0} (8)

which equalizes the cost of posting a vacancy to its expected benefits. This equation pins
down the number of vacancies firms decide to post every period, which is equal to the market
tightness since there is unit mass of workers searching every period.

Match Surplus. Let S(n, s, e) := W(n, s, e) + J(n, s, e)−U(s, e) denote the present value of a
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match of quality n. In Appendix A.1, I show that this can be written as

S(n, s, e) = f (n, s)− h(s) + βEs′|s

[
(1− δ)max{S(n, s′, e′), 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)

+ α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)

− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}
]

.

(9)

The first term in the expectation corresponds to the continuation value of the match conditional
on survival, i.e. no separation occurs (either exogenously or endogenously) and the worker
does not get poached to a better match. The second term corresponds to the expected surplus
the worker extracts from moving up the job ladder. The last term is the foregone surplus
the worker loses by being employed. Finally, notice that all future worker and firm decisions
appear in the surplus equation.

Proposition 1. [Job ladder] For a given state (s, e), S(n, s, e) is strictly increasing in n.

The formal proof of this result is relegated to Appendix A.3. Intuitively, the surplus of a
match is simply the expected future stream of output less home production and since output
is strictly increasing in the quality of the match, the surplus will be as well.

Wage Determination. Workers and firms split the surplus according to the Nash bargaining
solution:

w(n, s, e) = arg max
w

SW(n, s, e)α J(n, s, e)1−α (10)

where SW(n, s, e) := W(n, s, e) −U(s, e) is the worker surplus and α ∈ [0, 1] is the worker’s
bargaining power. Note that the firm surplus is simply J(n, s, e) because of free entry. This
surplus splitting rule yields the standard condition that worker surplus is proportional to firm
surplus (see Appendix A.2)

J(n, s, e) =
1− α

α
SW(n, s, e) (11)

which implies SW(n, s, e) = αS(n, s, e) and J(n, s, e) = (1− α)S(n, s, e). So the worker and firm
surpluses are also strictly increasing in match quality n. In Appendix A.2, I show that the wage
can be expressed as the weighted average of output and home production plus the expected
gains from on-the-job search next period.

1.5 Equilibrium

Definition 1.1 (Equilibrium). A recursive stochastic equilibrium, given a sequence of shocks {st}∞
t=0

and an initial distribution {e0(n)}N
n=1, is a path for market tightness {θt}∞

t=0, a distribution of workers
across match qualities {{et(n)}N

n=1}∞
t=1, and a surplus function S(n, st, et) such that
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1. θt satisfies the free entry condition (Equation (8)) for all t

2. S(n, st, et) solves its recursive formulation Equation (9)

3. {{et+1(n)}N
n=1, ut+1}∞

t=0 follow their laws of motion Equation (4) and Equation (3)

The equilibrium is fully characterized by Equations (1), (4), (8), (9) and (11). Solving for
the equilibrium outcomes is not straightforward because of three features of the model. First,
the joint surplus of a match depends on its expected future value, i.e. on all possible decisions
of the worker and the firm. Second, the joint surplus depends on the cycle in part through
the market tightness which is itself a function of the surplus. Lastly, the surplus of a match of
quality n depends on the future surpluses of all other match qualities −n.

I use the following solution method to circumvent these issues. I approximate the surplus
as a polynomial in the distribution {et(n)}N

n=1 using the collocation method. Then, in a given
period with the distribution {et(n)}N

n=1 inherited from the previous period, Equation (8) is
used to invert the market tightness θt. Finally, I iterate forward using Equation (4) to get the
new distribution {et+1(n)}N

n=1. The key step is approximating the surplus equation for each
triple (n, s, e). The full description of the solution method, as well as the computational and
implementation details, are relegated to Appendix B.1.

2 Estimation and Data

In this section, I describe how the model is estimated. I first complete the description of the
model with its parametric specification and then explain the procedure used to estimate the
model parameters. Next, I describe the data and the set of moments used for estimation.
Finally, I present the parameter estimates and assess the model fit.

2.1 Parametric Assumptions

State Space. I allow for five different states and specify the magnitude of the productivity
shocks with the parameter step as follows:

z(s1) = 1− 4step, z(s2) = 1− 3step, z(s3) = 1− 2step, z(s4) = 1− step, z(s5) = 1.

For example, if step = 0.025 then the worst state corresponds to a 10% productivity shock
relative to the highest state. I assume the transition matrix is parameterized by {p1, p2} and
takes the form

Π =


1− p1 p1 0 0 0

p2 1− p1 − p2 p1 0 0
0 p2 1− p1 − p2 p1 0
0 0 p2 1− p1 − p2 p1

0 0 0 p2 1− p2


where Π(i, j) is the probability of moving from state i to state j.
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This specification for Π involves two main restrictions. First, it doesn’t allow the state
to increase or decrease by more than 1 from one period to the next. In practice, I simulate
the model at a monthly frequency which makes this assumption less restrictive since month-
to-month jumps or falls of more than one state are rare in the data. Second, it implies, for
example, that the probability of going from the worst to the second-worst state is the same
as going from the second-best to the best state, i.e. Π(2, 1) = Π(5, 4) = p2. This is more
restrictive since one could imagine allowing the rates at which the economy recovers and
worsens to differ. In a previous version, I relax this assumption, but find that it does not
improve the quality of the model fit nor does it impact the cyclicality of the average match
quality5.

Production. Next, the output of a match of quality n in state s is given by the production
function

f (n, s) = z(s)× (φ1 + φ2n + φ3n2)

where {φ1, φ2, φ3} are parameters. I assume home production is proportional to the state of the
economy:

h(s) = z(s)× γ

Matching Function. Finally, the last element of the model is the matching function which
specifies the number of new meetings as a function of aggregate search and vacancies. I follow
den Haan, Ramey, and Watson (2000) and assume it takes the form

m = m(1, θ) =
θ

(1 + θι)1/ι

where ι > 0. This functional form ensures that the meeting probabilities p(·), q(·) are bounded
between 0 and 1. I turn now to describing how the model parameters are estimated.

2.2 Estimation

Externally set parameters. In addition to the number of states, I externally set the following
parameters. The number of different match qualities is set to N = 10. This could in principle
be arbitrarily big, but I found that 10 was simultaneously large enough to allow for meaningful
endogenous sorting and small enough that it doesn’t significantly increase the computational
cost of the solution method. The monthly discount factor is set to β = 0.996. Finally, I set
the worker’s bargaining power to α = 0.5. Note that this implies, from Equation (11), that
the worker and firm surplus are equal every period, SW(n, s, e) = J(n, s, e), ∀n, s, e. In future
work, I plan to estimate α, but do not do so here because none of the moments have a clear
one-to-one mapping with bargaining power. Finally, note that the model can be extended to

5In the previous version, I also include {p3, p4} where p3(p4) is the probability of moving up (down) by two
states. Although adding these two parameters did not significantly increase the computational burden of the
estimation routine, it did affect the precision of the model estimates. This is because the moments that roughly
pin down {p1, p2} are the same that would roughly identify {p3, p4}. Moreover, since the model is estimated at
a monthly frequency, the estimated p3, p4 would turn out to be very small and not statistically different from 0.
Hence, they would have little to no impact on the sorting of workers over the business cycle. For these reasons, I
set p3 = p4 = 0.

12



allow α depend on the match quality6. This might be a reasonable extension to consider if
one thinks that bargaining power varies across worker or firm characteristics. Of course, it
then becomes even harder to estimate bargaining power if it is heterogeneous across match
qualities. For the purposes of this paper, I stick to a homogeneous and exogenously set α.

Jointly estimated parameters. I use the Simulated Method of Moments (SMM)
to jointly estimate the 11 remaining parameters of the model denoted by ϕ :=
{δ, κ, φ1, φ2, φ3, step, p1, p2, ι, γ, η}. The SMM estimator is the solution to

ϕ̂ = arg min
ϕ

∑
i

wi

(
mi − m̂i(ϕ)

mi

)2

(12)

where i indexes the moments, mi is the data moment, m̂i(ϕ) is the corresponding moment sim-
ulated from the model under ϕ, and wi is the weight. In practice, I use 15 moments which
I describe in Section 2.5. To find the global minimum, I use the Markov Chain Monte Carlo
(MCMC) methods introduced by Chernozhukov and Hong (2003) and extended to allow for
parallel tempering by Baragatti, Grimaud, and Pommeret (2013) which have become increas-
ingly popular to estimate structural models in economics (see, e.g., amongst many others, Lise
and Robin, 2017; Oswald, 2019; Balke and Lamadon, 2020; and Jarosch, 2021).

The main advantage of MCMC, as opposed to standard gradient based approaches, is that
it is derivative free. Hence, it only requires evaluating the objective function repeatedly and
I do not have to worry about discontinuities. The disadvantage of this method is that it can
take a very long time for the chain to converge. In practice, I solve and simulate the model for
3,000 periods (250 years), but some of the parameters are not precisely estimated7, as I discuss
in Section 2.6. See Appendix C.2 for a description of the algorithm and computational details.

2.3 Data description

The model is estimated on monthly U.S. data from December 2001 to December 2019. The
data for all but one series used in this study come from the Basic Monthly Current Population
Survey (CPS). The CPS is a monthly survey of approximately 60,000 households dating back
over 60 years.

Although this survey is primarily designed for cross-sectional analysis, it contains a panel
dimension that can be taken advantage of to follow households and individuals over short
periods of time. In each period, the sample is split into eight disjoint "rotation groups". Every
household is interviewed for four consecutive months then is removed from the sample for
eight months. So in any given month, for example, 1/8th of the sample is answering questions
during their first of four consecutive months in the sample. This is done so that for each

6In fact, in this case the surplus equation is identical to Equation (9), except that all the α’s are now indexed by
match quality and so do not come out of the sums.

7The computational constraint is amplified here since I am estimating the model separately for each education
group. One estimation routine, i.e. for one education group, takes approximately 44 hours, hence the full estimation
routine takes close to two weeks. To get more precise estimates would require significantly increasing both the
number of chains and iterations, which would greatly increase the time needed to estimate the parameters for all
seven groups.
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household, both month-to-month and year-to-year statistics can be reported.
Using the CPS as opposed to other publicly available U.S. data such as the Panel Study of

Income Dynamics (PSID) has several advantages. First, it is better suited for the study of labor
market transitions due to its monthly frequency. Second, it has a large sample size which is
particularly important here because, as I explain in the next section, I partition the labor market
into disjoint groups and estimate the model separately for each group.

2.4 Segmenting the labor market

The only source of heterogeneity in the model comes from differences in match quality. Indeed,
irrespective of worker and firm characteristics, if a pair is of quality n, output will be f (n, s) and
the wage bill w(n, s). This model outcome is restrictive and is at odds with a large literature
who finds that worker and firm effects are very predictive of wages (see, e.g Abowd et al.,
1999, and more recently Bonhomme et al., 2019 and Lentz et al., 2021).

To address this concern, I partition the labor market into groups and estimate the model
separately for each group. Partitioning the labor market imposes the counterfactual restriction
that there are no flows in and out of the groups since, by construction, the groups are disjoint.
However, it relaxes the assumption that the only heterogeneity is in match quality. This as-
sumption now becomes: conditional on n, all workers within a group are identical. In practice,
I partition the labor market by workers’ educational attainment. I create seven disjoint groups
which are described in Table 1. The first group is the set of workers who did not receive a High
School diploma or equivalent. This includes workers who do not have any form of schooling
up to and including workers who went to High School, but did not complete the 12th grade.
The second and largest group (28.2%) corresponds to workers who received a High School
diploma or equivalent, but did not pursue a college or professional degree. The third group
are workers who attended college but did not receive a degree. The fourth group corresponds
to workers who hold an associate’s degree from either an occupational, vocational, or aca-
demic program. The fifth and second largest group (21.6%) is workers who hold a Bachelor’s
degree. The sixth group is the set of workers who hold a Master’s degree. Finally, the last and
smallest group (3.1%) are workers who either received a professional or doctoral degree.
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Table 1: Description of the education groups

Group Descritpion CPS Code Frequency (%)

No HS Up to and including those that didn’t 2, 10, 20, 30 9.3
complete HS (i.e. no diploma awarded) 40, 50, 60, 71

HS HS diploma or equivalent 73 28.2

Some college Some college, but no degree awarded 81 18.9

Associate’s Associate’s degree awarded 91, 92 10.4
(occupational, vocational, and academic programs)

BA Bachelor’s degree awarded 111 21.6

Master’s Master’s degree awarded 123 8.5

Prof/PhD Professional or doctoral degree awarded 124, 125 3.1

Note: Because of the weighting in the CPS Basic Monthly, the frequencies for the pooled data across all months are the same
as the frequencies in each month.

In principle other characteristics or combinations of characteristics could have been used.
For example, conditioning not only on educational attainment but also on industry would
have been even better since then the assumption is that within an industry and education
pair, conditional on match quality, all workers are the same. I do not do this here because
the sample size is not large enough. The groups would be too small and there would not be
enough variation in the moments to identify the model parameters. Another advantage of
using educational attainment is that the flows between the various groups are negligible.

2.5 Data Moments

In this section, I describe which empirical moments are used to estimate the model parameters.
The list of moments and their descriptions is presented in Table 2. The first series I compute is
market tightness. This is the only series that is not computed for each education group for lack
of vacancy posting data by education. To obtain the series, I divide monthly vacancies8 by the
seasonally adjusted monthly unemployment level9 and use the mean and standard deviations
as moments.

Next, I compute the monthly employment-to-employment (EE), employment-to-
unemployment (EU), and unemployment-to-employment (UE) transition rates for each ed-
ucation group in the CPS. I follow the methodology of Eeckhout and Lindenlaub (2019) to
create these series in the context of the rotation groups structure of the CPS and verify that
the resulting series, when aggregated, are similar to the ones for the whole economy10. I use
the means of each of these series, the standard deviation of the EE rate, and the correlation
between the UE and EE rates as moments.

8Series JTS000000000000000JOL from the Job Openings and Labor Turnover Survey (JOLTS).
9Series LNS13000000 from the Bureau of Labor Statistics (BLS).

10I compare the series to the ones computed by Fujita, Moscarini, and Postel-Vinay (2021) and made publicly
available (and frequently updated) on the authors’ websites.
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Table 2: Description of the empirical moments

Description Moment Level Source

Market tightness E[θt], sd(θt) aggregate JOLTS, BLS

EE transition rate E[EEt], sd(EEt) by education CPS Basic Monthly
EU transition rate E[EUt] by education CPS Basic Monthly
UE transition rate E[UEt] by education CPS Basic Monthly

Cor(UEt, EEt)

Unemployment Rate E[ut], sd(ut) by education CPS Basic Monthly
uk

t : fraction of ut searching E[u3
t ] by education CPS Basic Monthly

for > k months

Avg. wage sd(wt) by education CPS Basic Monthly
Cor(wt, ut)

Avg. wage after EE E[wEE
t /wt] by education CPS Basic Monthly

Avg. wage after UE E[wUE
t /wt],sd(wUE

t /wt) by education CPS Basic Monthly

The unemployment rate is calculated for each education group and I match its mean and
standard deviation. I compare these to their BLS counterparts11 to verify that they are correctly
computed. I also compute the fraction of unemployed workers who have been searching for a
job for more than 3 months, which I denote as u3

t , and use its mean as a moment.
Finally, I use the following wage moments12. I compute the mean wage and its correlation

with unemployment. Next, I compute the average starting wages in the economy following ei-
ther an EE or an UE transition. I normalize these by the mean wage in the economy and match
the means of both and the standard deviation of the UE ratio. In Appendix C.1, I describe how
the corresponding model simulated moments are created.

I use the following weights in Equation (12). The mean market tightness and unemploy-
ment rate have weight 10. The mean EE, EU, and UE transition rates and the standard devia-
tion of the mean wage have weight 5. The standard deviations of the market tightness and of
the unemployment rate have weight 3. All other moments have weight 1.

In total, there are 11 parameters to estimate with 15 moments. Although there is no one-to-
one mapping from the moments to the model parameters, I provide here a heuristic identifica-
tion argument. φ is an approximation of the mean wage for a given quality and state. The other
loading parameters on the production function, φ2 and φ3, will be pinned down by moments
relating to wage dispersion and growth. Since market tightness in this environment reduces to
the number of vacancies posted, it will be affected by the exogenous separation rate δ and the
cost of posting a vacancy κ. In particular, the standard deviation of vacancies identifies κ. The
EE and UE rates, as well as the average wages following either of these transitions, will help
identify the parameter on the meeting function, ι. The parameters governing the transition
dynamics and magnitude of the aggregate state, {p1, p2, step}, are identified by variation in

11For the unemployment rate, these are the series LNS14027659 (No HS), LNS14027660 (HS), LNS1027689 (Some
college or Associate’s), LNS14027662 (Bachelor’s), CGMD25O (Master’s), CGPD25O (Professional), and CGDD25O
(PhD).

12Throughout the paper, all wage moments are converted to 2019 USD using the CPI-U.
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the standard deviation of unemployment and market tightness since these two model objects
are very responsive to changes in the productivity level, as I highlight in an impulse response
exercise in Section 3.2.

Finally, although δ is identified by variation in other moments as discussed above, it has
an almost one-to-one mapping with the mean EU transition rate. When there is no change
in the aggregate state, there will be no endogenous separations because matches that were
previously feasible will remain so. Hence, the only variation in the EU rate in those periods
will be due to exogenous separations. The same argument holds in periods of expansion when
the productivity level increases. However, during recessions when the state decreases, it could
be that some matches are no longer jointly profitable and so are endogenously separated. In
that case, the EU rate will not only be pinned down by δ, but also by fluctuations in the number
of matches that are feasible. However, as I discuss later, the estimated transition matrices Π
will have a heavy diagonal, making it so that the vast majority of periods do not correspond
to a state change and even less to a state decrease. Hence, most of the variation in the EU rate
will be due to δ.

2.6 Estimated Parameters

I now briefly discuss the estimated parameters which are presented in Table 3 before turning
to model fit. The exogenous separation rate δ is decreasing in educational attainment: workers
with higher education levels are more shielded to random separations. The loading parameters
on the production function φ1, φ2, φ3 imply that output is increasing in education. Moreover,
the flow cost of posting a vacancy κ is roughly constant for all groups, hence posting a vacancy
becomes cheaper, relative to output, to firms for the higher education groups. Next, the output
relative to home production, a key object in determining which matches are feasible in any
given state, is increasing in education. Finally, the Zipf share is approximately constant across
groups implying that, for example, there are no significant differences in the probability of
creating matches of the highest quality across groups13.

13Note that for η = 0.4, the probabilities of forming a match of qualities {1, 2, . . . , N}, where N = 10 are approxi-
mately {0.175, 0.133, 0.113, 0.101, 0.092, 0.086, 0.081, 0.076, 0.073, 0.070}. So the probability of creating a match of the
lowest quality is 0.175/0.070 = 2.5 times greater than the probability of creating a match of the highest quality.
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Table 3: Estimated Parameters

Description No HS HS Some college Associates BA Master’s Prof./PhD

δ exogenous .025 .015 .015 .012 .008 .008 .006
separation rate (.010) (.006) (.006) (.009) (.009) (.016) (.008)

κ vacancy 729 614 687 690 752 755 689
posting cost (164) (201) (196) (181) (168) (175) (225)

φ1 1154 1154 1463 1755 3026 3396 3198
Prod. function: (857) (1017) (1161) (1365) (2613) (2158) (2590)

φ2 f (n, s) = 104 119 124 168 236 272 197
z(s)× (φ1 + φ2n + φ3n2) (86.8) (110) (95) (143) (196) (200) (155)

φ3 12.2 12.5 14.9 20.4 42.0 53.1 44.2
(10.7) (13.6) (14.1) (18.9) (55.3) (69.1) (38.0)

step magnitude of .045 .044 .041 .042 .049 .043 .038
prod. shock (.025) (.028) (.024) (.026) (.028) (.029) (.028)

p1 prob. moving .035 .042 .037 .032 .044 .041 .021
up 1 state (.026) (.030) (.028) (.031) (.041) (.037) (.019)

p2 prob. moving .055 .046 .054 .053 .042 .033 .026
down 1 state (.026) (.030) (.027) (.031) (.028) (.032) (.023)

ι matching .883 .898 1.00 .966 1.15 .977 1.24
function (.448) (.430) (.431) (.399) (.518) (.544) (.412)

γ home production 548 401 509 553 472 511 592
h = z(s)× γ (264) (267) (279) (266) (245) (256) (158)

η Zipf shape .395 .444 .402 .449 .365 .367 .400
parameter (.301) (.351) (.294) (.350) (.358) (.381) (.370)

Note: The standard deviation of the coldest chain is reported in parentheses.

2.7 Model Fit

In Table 4, I draw a series of shocks over 3,000 periods (discarding the first 600 periods for
burn-in) using the estimated Π transition matrix and simulate the relevant time series. I report
the resulting model simulated moments and compare them to their empirical counterparts for
each education group. Recall that the first two moments, the mean and standard deviation
of market tightness, are computed for the whole economy but estimated for each education
group. Hence, to assess the fit of these moments, it is best to look at the frequency weighted
mean across groups14.

14Doing so, note that the estimated mean market tightness is

.541 ∗ .093 + .651 ∗ .282 + .570 ∗ .189 + .660 ∗ .104 + .907 ∗ .216 + 1.22 ∗ .085 + .763 ∗ .031 = .733

and the mean standard deviation is

.152 ∗ .093 + .218 ∗ .282 + .206 ∗ .189 + .256 ∗ .104 + .282 ∗ .216 + .297 ∗ .085 + .276 ∗ .031 = .236

where the weights are the frequencies reported in Table 1. So the mean market tightness is overestimated in the
model, but the volatility is close to what we see in the data.
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Table 4: Targeted moments

No HS HS Some college Associates BA Masters Prof./PhD

Data Model Data Model Data Model Data Model Data Model Data Model Data Model

E[θ] .552 .541 .552 .651 .552 .570 .552 .660 .552 .907 .552 1.22 .552 .763
sd(θ) .288 .152 .288 .218 .288 .206 .288 .256 .288 .282 .288 .297 .288 .276

E[EE] .025 .036 .021 .026 .024 .025 .019 .021 .020 .016 .018 .016 .017 .012
sd(EE) .007 .005 .005 .004 .006 .004 .005 .004 .004 .002 .005 .001 .005 .002
E[EU] .026 .025 .015 .015 .013 .015 .009 .012 .007 .008 .006 .008 .004 .006
E[UE] .223 .316 .247 .356 .266 .353 .263 .376 .269 .505 .256 .531 .237 .476
Cor(UE,EE) .585 .875 .753 .848 .741 .849 .609 .821 .683 .772 .494 .744 .117 .710

sd(wt) 91.1 245 90.5 358 136 405 131 590 189 1252 203 1272 386 1378
Cor(wt, ut) -0.427 -0.914 -0.434 -0.894 -0.533 -0.884 -0.357 -0.889 -0.133 -0.885 -0.104 -0.905 -0.153 -0.887

E[wEE
t /wt] .933 1.17 .913 1.12 .857 1.10 .917 1.09 .911 .956 .949 .943 .971 .971

E[wUE
t /wt] .808 .654 .764 .574 .691 .596 2.00 .557 .682 .481 .687 .461 .643 .486

sd(wUE
t /wt) .109 .022 .075 .030 .086 .031 .340 .033 .099 .031 .193 .025 .356 .040

E[ut] .123 .054 .067 .028 .056 .028 .041 .021 .032 .008 .025 .008 .016 .007
sd(ut) .032 .011 .023 .008 .020 .008 .015 .006 .011 .003 .008 .002 .006 .003
E[u3

t ] .446 .324 .472 .275 .478 .279 .400 .253 .443 .131 .413 .109 .476 .160

Note: To compute the time series and corresponding moments, the model is simulated for 3,000 periods (250 years) where the first 600 periods (50 years) are burn-in.
To alleviate the effect of initial conditions, I do this 500 times and report the mean of each moment.

The model does a good job in matching the levels of EE, EU, and UE transition rates. Fur-
thermore, it is able to mimic the fact that the EU transition rate is strongly decreasing in ed-
ucation. As previously discussed, this is because the estimated δ are strongle decreasing in
education. However, the model predicts that the UE rate is increasing in education, whereas
in the data it does not appear to be. Next, volatility of wages is overestimated by the model,
but it is does a relatively good job in match relative wages both out of employment and unem-
ployment. Finally, the model underestimates unemployment for all groups. In Appendix C.3,
I assess how well the model matches several untargeted moments.

3 Cyclicality of the Average Match Quality

In this section, I use the estimated model to analyze the effects of the business cycle on the
average match quality in the economy. I start by discussing the two main channels that impact
its cyclicality and then turn to a numerical exercise to help disentangle these two channels.
Finally, I explore the relationship between average match quality and mismatch.

3.1 Average Match Quality over the Cycle

The average match quality in period t is

nt =
∑N

n=1 et(n)× n

∑N
n=1 et(n)

.

Two mechanisms in the model impact its movements across the cycle. First, during recessions,
some matches that were previously feasible are separated. This is the Schumpeterian cleansing
effect of recessions and it implies an increase in n. Let

n∗(s, e) := min{n : S(n, s, e) > 0}
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denote the cutoff quality such that all matches below it are not feasible. For example, if n∗ = 5,
then all meetings between workers and firms that yield a quality less that 5 are not formed,
and all inherited matches that are less than 5 are separated. The degree to which this threshold
fluctuates over time is pinned down by the value of production relative to home production
across states. If f (n, s) is much bigger than h(s), n∗ will not fluctuate much. On the other
hand, if home production is close to output, then movements in the aggregate state can make
a previously feasible match infeasible. Second, during recessions, the number of vacancies
posted by firms decreases and so the contact rate to the worker, p(θ), decreases. So workers
can no longer sort into better jobs as quickly as before which results in a decrease in n. This is
what Barlevy (2002) calls the sullying effect.

In Table 5, I report several statistics of n. Average match quality is very high for each
education group. This is because, in the model, the highest quality matches only separate ex-
ogenously and the number of workers willing to accept an offer of quality n is increasing in n.
These two features of the model result in heavy bunching at the upper tail of the match distri-
bution. Average match quality is higher and less volatile as educational attainment increases.
Furthermore, the correlation between n and u is strongly negative across all groups, indicating
that average match quality is procyclical. Finally, the correlation between market tightness and
unemployment, a measure of the strength of the sullying effect, is also strongly negative for all
groups.

Table 5: Cyclicality of the average match quality

No HS HS Some college Associate’s B.A. Master’s Prof./PhD

E[nt] 8.50 9.01 9.05 9.21 9.60 9.61 9.67
sd(nt) .127 .110 .111 .090 .050 .036 .055
Cor(nt, ut) -0.803 -0.775 -0.840 -0.754 -0.771 -0.811 -0.789

Cor(θt, ut) -0.835 -0.823 -0.806 -0.841 -0.836 -0.865 -0.859

Note: To compute the time series and corresponding moments, the model is simulated for 3,000 periods (250
years) where the first 600 periods (50 years) are burn-in. To alleviate the effect of initial conditions, I do this 500
times and report the mean of each moment.

Although the correlation between n and u is informative for the overall cyclicality of aver-
age match quality across a large number of periods, it could be masking key dynamics for two
main reasons. First, although the model is simulated for 250 years (3,000 periods), since the
estimated transition matrices for the aggregate shock Π have a heavy diagonal, the number of
periods that follow a state change is small. Most of the time, the state does not change. The
number of periods for which there is a decrease in the productivity level, what I refer to as
recessions, is even smaller. Second, it could be the case that the magnitude of this correlation
is driven by particularly bad recessions. Going from the second lowest state to the worst is
intrinsically different than going from the highest state to the second-best. To explore this,
I analyze the different impacts on average match quality when conditioning on not only the
current state but also on the state in the previous period.

In Figure 2, for each education group, I plot the percent change in n against the percent
change in the mass of employed workers who survive separations, ∑N

n=1 e+(n). I use the latter
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as a measure of the cycle since it occurs before reallocation and sorting within a period, but
includes the initial effect of the state on the endogenous distribution of workers across matches.
Finally, I only include in the plots periods for which there has been a decrease in the aggregate
state. There are four such cases: when the shock goes from state 2 to state 1, from state 3 to
state 2, from state 4 to state 3, and from state 5 to state 4.
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Figure 2: Change in average match quality when the state decreases

(a) Didn’t complete High School (b) High School

(c) Some College (d) Associate’s

(e) Bachelor’s (f) Master’s

(g) Professional/PhD

Note: This figure plots the percent change in n against the percent change in ∑n e+(n). I only plot periods for
which there is a decrease in the state. The dashed red lines correspond to 0%.
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In periods where the state decreased from 2 to 1, both the sullying and cleansing effects
can dominate as there are positive and negative changes in average match quality. This holds
across all seven education groups. Next, moves from state 3 to state 2 are concentrated in the
top left quadrant for each group, suggesting that the cleansing effect is stronger. They are also
associated with larger percent changes in the measure of workers who survive separations.
The points corresponding to moves from state to 5 to 4 are also in the top left quadrant, but
are concentrated in a fairly small region corresponding to a small increase in average match
quality and a small decrease in the mass of workers surviving separations. Finally, the points
corresponding to moves from state 4 to 3 are in the lower right quadrant. For all groups, they
correspond to an increase in the number of workers surviving separations and a decrease in
average match quality. The sullying effect clearly dominates during this last set of periods.

3.2 Impulse Responses to Productivity Shock

In order to further disentangle the effects of the cleansing and sullying effects on the average
match quality, I conduct the following exercise, illustrated in Figure 3. Suppose the economy is
in steady state at the highest level of productivity (s = s5) in period t = −1. Then an unantici-
pated and one-period -5% productivity shock hits the economy and lasts for TP periods, after
which the economy returns to steady state at s = s5 in period TP + 1. This thought exercise
consists in two key assumptions. First, the shock is not persistent. Second, agents in the econ-
omy have perfect foresight. They know the shock is not persistent and that the economy will
return to its steady state in period TP + 1. This implies that there is no uncertainty since agents
have full information on the path of s after the shock occurs (before it occurs they do not since
the shock is unanticipated).

Figure 3: Illustration of the timing of the productivity shock

Steady
State

t = −1

Unanticipated −5%
productivity shock

0 1 TP

Transition Path

Back to
Steady State

TP + 1

The impulse responses of market tightness, unemployment, hires (both out of unemploy-
ment and out of employment), and average match quality are graphed in Figure 4 for two
education groups (High School and Master’s). The numerical procedure used to solve for the
transition path back to steady state is relegated to Appendix B.2. Right after the shock hits,
some matches that were previously feasible are no longer jointly profitable and endogenously
separate. This is the cleansing effect and results in a decrease in the mass of workers who
survive separations, i.e. e0+ ≤ e−1+. Equivalently, the pool of workers who are unemployed
following separations increases so that u0+ ≥ u−1+. Next, firms decreases their vacancy post-
ing as shown Figure 4a. This decrease in market tightness results in a decrease in the contact
rate to the worker, but an increase in the contact rate to the firm. Together, they translate to
a decrease in meetings between workers and firms and so a decrease in hiring, as shown in
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Figure 4c. At the end of the period, after the new matches have formed and production has
occurred, unemployment is higher than it was in the previous period (u0 > u−1) as can be seen
in Figure 4b.

Figure 4: Impulse Responses to a -5% productivity shock

(a) Market Tightness (b) Unemployment

(c) Hires (UE and EE) (d) Average Match Quality

Note: To facilitate comparisons between these two groups, I set η = 0, which makes it so that the probability that a
meeting between a worker and firm yields a quality n is 1/N, ∀n.

Since the productivity shock only affects endogenous separations, average match quality
increases in the period the shock hits as depicted in Figure 4b. Note that the increase is small
in magnitude because in the model there is significant mass in the upper tail of the match
quality distribution. To see this, recall that the mass of workers who would accept to form
a match of quality n is u+ + ∑n−1

k=1 ek+ and is increasing in n. Indeed, it is not profitable for
the workers in the best quality matches to move down the job ladder and accept offers of a
lower quality. Furthermore, these matches can only separate exogenously15 which occurs with
low probability. All these factors make it so there is significant bunching at the top end of
distribution, and this is especially true in the stationary version of the model.

The next period, at t = 1, the economy is back at the highest productivity level and so firms

15In principle, the highest quality matches can separate endogenously in the case where the state of the economy
is so bad that no matches are feasible, but this is not a realistic case nor is it one I have encountered in any of the
model parameterizations.
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take advantage of the larger pool of unemployed workers by posting more vacancies. In fact,
there is a slight over adjustment and θ1 > θ−1. This translates to a large increase in hiring from
unemployment (more than 1% above its steady state level for the group of workers with only
a High School diploma or equivalent) and from employment. On average, matches formed
out of unemployment will be of lower quality than matches formed out of employment so this
results in a decrease in the average match quality in period t = 1. This is the sullying effect.
In the following periods, the series plotted all converge back to their steady state values at
varying speeds. Market tightness recovers the fastest and average match quality the slowest.

Finally, the mechanisms described above are identical across the two education groups. The
only difference is in the magnitude of the responses. The depth of unemployment, decrease
in vacancy posting by firms, and decrease in hiring, both out of unemployment and out of
employment, is greater for the High School group. These translate to a larger initial increase
of the average match quality relative to that of the Master’s group. However, the response in
hiring is larger for the High School group and so the sullying effect is bigger. These differences
in magnitude across the two groups primarily stem from differences in the relative value of
output and home production. This ratio is governed by the parameters {φ1, φ2, φ3, γ} and is
strictly increasing in educational attainment for all match qualities.

3.3 Mismatch over the cycle

Finally, in this section, I explore the relationship between average match quality and mismatch.
In the model, a Social Planner maximizing output would allocate all workers to the firms with
which they are best matched, i.e. all matches would be of quality N. I assess the level of
mismatch in the economy, how far away from this efficient allocation, using three measures.
First, I look at the fraction of the employed who are mismatched, which I denote as

M1
t :=

∑N−1
n=1 et(n)

∑N
n=1 et(n)

.

Next, I look at a measure of aggregate distance from the optimal match defined as

M2
t :=

∑N−1
n=1 et(n)× (N − n)

∑N
n=1 et(n)× N

.

The idea here is that, all else equal, it would take longer for a worker in a match of quality
n = 1 to move up the job ladder to the best match than it would for workers in higher quality
matches k > 1. To capture this, the measures of workers in each match quality no longer
have the same weight, as is the case in M1

t , but are weighted by the distance to the best match
quality. I normalize by ∑n et(n) × N so M2 can be interpreted as the relative distance to the
efficient allocation. Finally, the last measure captures the losses in surplus due to mismatch:

M3
t :=

∑N−1
n=1 et(n)×

[
S(N, st, et)− S(n, st, et)

]
∑N

n=1 et(n)× S(n, st, et)
.
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This measures how much higher the surplus of the mismatched would be if all matches were
optimal as a fraction of total surplus in the economy. Since the joint surplus is increasing in
match quality, here higher quality matches have a higher weight than lower quality matches,
as opposed to M2

t .
Notice that, in this setting, the level of mismatch, as measured by any of the above three

statistics, is perfectly equivalent to the level of efficient matches. For example, the fraction of
workers perfectly matched is e(N)/ ∑n e(n) = 1−M1 and a similar relationship holds for the
two other measures. I focus on mismatch because the object of interest in this study is the
average match quality and it is more natural to think of how it relates to mismatch.

In Table 6, I report several statistics for each of these three measures of mismatch. First, note
that there is significant mismatch in the model across the business cycle. The fraction of work-
ers in inefficient matches (M1) is above 14% for all groups and more than 50% for the group
of workers that didn’t complete High School. Similarly, the surplus losses due to mismatch
(M3) are high. In contrast, M2 is much smaller than the two other measure of mismatch. This
is because the distribution of workers across matches in the model has a fat right tail. Next, all
three measures have a strong positive correlation with unemployment and a strong negative
correlation with average match quality. Finally, there is a clear relationship with educational
attainment. All three measures of mismatch, as well as the magnitudes of their correlation
with unemployment, are decreasing in education. However, for the correlations with average
match quality, there does not appear to be any relationship with education.

Table 6: Summary statistics for the measures of mismatch

No HS HS Some college Associate’s B.A. Master’s Prof./PhD

E[M1
t ] .509 .369 .357 .306 .168 .166 .143

sd(M1
t ) .028 .029 .027 .027 .017 .013 .020

Cor(M1
t , ut) .697 .645 .620 .620 .644 .700 .684

Cor(M1
t , nt) -0.967 -0.960 -0.958 -0.957 -0.962 -0.967 -0.969

E[M2
t ] .149 .099 .094 .078 .040 .039 .034

sd(M2
t ) .013 .011 .011 .009 .005 .004 .005

Cor(M2
t , ut) .807 .773 .744 .758 .769 .813 .789

Cor(M2
t , nt) -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

E[M3
t ] .526 .361 .343 .283 .145 .144 .121

sd(M3
t ) .048 .040 .040 .032 .016 .012 .017

Cor(M3
t , ut) .717 .671 .642 .648 .660 .701 .675

Cor(M3
t , nt) -0.942 -0.944 -0.961 -0.963 -0.966 -0.951 -0.970

Note: To compute the time series and corresponding moments, the model is simulated for 3,000 periods (250 years)
where the first 600 periods (50 years) are burn-in. To alleviate the effect of initial conditions, I do this 500 times and
report the mean of each moment.

This result is the opposite of the one found in Baley, Figueiredo, and Ulbricht (2021) who
conclude that mismatch is procyclical. As in this model, their framework allows for the cleans-
ing and sullying effects to both operate jointly, but they find that the cleansing effect strictly

26



dominates.

4 Minimum Wage

In this section, I extend the model to allow for an exogenous minimum wage and show that
not taking into account the cyclicality of the average match quality can lead to miscalculating
the effects of the policy. First, I present how the model is modified to allow for an exogenous
minimum wage. Then, I discuss how the presence of the minimum wage affects agents’ behav-
ior within the model and how it relates to the cyclicality of the average match quality. Finally,
I assess the effects of the policy in both the stationary and stochastic versions of the model.

4.1 Adding a minimum wage

So far, the model described can be thought of as a framework where there is no legal mini-
mum wage. Extending the model to include a minimum wage entails adding an additional
constraint to the Nash bargaining problem. As in Flinn (2006), the surplus splitting rule now
becomes

w(n, s, e) = arg max
w≥wmin

[
W(n, s, e)−U(s, e)

]α J(n, s, e)1−α

where wmin denotes an exogenously set minimum wage. I assume that wmin applies to all
potential matches and is time invariant16.

The impact of this added constraint can best be understood by thinking of the cutoff match
quality n̂(s, e) such that all n < n̂(s, e) are paid the minimum wage. This threshold is defined
as

n̂(s, e) := max{n : wmin ≥ w(n, s, e)}.

The added constraint to the wage bargaining problem is only binding in a given state (s, e)
if n̂(s, e) ≥ n∗(s, e). In that case, all matches of quality n ∈ {n∗(s, e), . . . , n̂(s, e)} would be
feasible in the absence of wmin, but would yield a lower wage than wmin. In the presence of
wmin, these matches are consummated and the workers are paid wmin if the firm’s participation
constraint is still satisfied at wmin, i.e. if the firm surplus under this higher wage bill remains
positive. Note that if n̂(s, e) = n∗(s, e), only the lowest feasible quality match gets paid
wmin. On the other hand, when n̂(s, e) < n∗(s, e), the minimum wage is not feasible since
S(n̂(s, e), s, e) < 0, and so it does not impact allocations in the economy. I focus on the case
where wmin is binding, i.e. when n̂(s, e) ≥ n∗(s, e). In practice, this entails choosing wmin to be
large enough to impact wages paid in the economy. I set wmin to $2,400, which corresponds to
a worker earning an hourly wage of $15 over the course of a month17.

Value Functions. The worker and firm value functions (and so the joint surplus of a match)
now depend on the cutoff n̂(s, e) which is itself a function of wmin. This implies that the thresh-
old n∗ now also depends on wmin. In what follows, I continue to write this cutoff as n∗(s, e),

16The empirical minimum wage varies across time because of inflation. However, note that the empirical mo-
ments I match are all normalized to 2019 USD so this is not a concern.

17I assume the worker works all four weeks for 40 hours per week.
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but note that it should really be written as n∗(s, e; wmin) to highlight the fact that, in any given
period, this cutoff in the presence of wmin is not necessarily the same as what it would be if
there was no binding minimum wage. First, note that the value of unemployment is now

U(s, e; wmin) = h(s) + βEs′|s

[
U(s′, e′; wmin)

+ p(θ(s, e+))
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(n̂(s′, e′), s′, e′)−U(s′, e′; wmin), 0}

+ p(θ(s, e+))
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′)−U(s′, e′; wmin), 0}
]
.

(13)

The transitions into employment from unemployment can be separated into two cases. If an
unemployed worker meets with a firm to create a match quality weakly less than n̂(s′, e′), they
accept if it is more profitable than staying unemployed and receives the value associated with
earning wmin next period, W(n̂(s′, e′), s′, e′). On the other hand, if the match quality is strictly
greater than n̂(s′, e′) and it is jointly profitable to consummate it, then they earn the market
wage next period.

For n > n̂(s, e), the value to a worker of employment in a match of quality n is still given by
Equation (6) except that the value of unemployment now depends on wmin. However, workers
in matches of quality n ∈ {n∗(s, e), . . . , n̂(s, e)}18 now earn wmin. So Equation (6) is modified so
that the value of being employed in a match of quality n in the presence of a binding minimum
wage is given by

W(n, s, e; wmin) = 1{n ≤ n̂(s, e)}wmin +
(
1− 1{n ≤ n̂(s, e)}

)
w(n, s, e)

+ βEs′|s

[
U(s′, e′) + (1− δ)1{S(n, s′, e′) ≥ 0}

(
W(n, s′, e′; wmin)−U(s′, e′; wmin)

)

+ (1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′; wmin)−W(n, s′, e′; wmin), 0}
]

.

Similarly, the value to the firm now also depends on wmin:

J(n, s, e; wmin) = f (n, s)− 1{n ≤ n̂(s, e)}wmin −
(
1− 1{n ≤ n̂(s, e)}

)
w(n, s, e)

+ βEs′|s

[
(1− δ)1{S(n, s′, e′; wmin) ≥ 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
J(n, s′, e′; wmin)

]
.

18Note the value functions are ex post, i.e. they correspond to the value to the worker and to the firm of a formed
match, so are only defined for n > n∗(s, e).
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In Appendix A.4, I show that the joint surplus is

S(n, s, e; wmin) = f (n, s)− h(s) + βEs′|s

[
(1− δ)max{S(n, s′, e′; wmin), 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)

+ α(1− δ)1{S(n, s′, e′; wmin) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′; wmin)

− p(θ(s, e+))α max{S(n̂(s′, e′), s′, e′; wmin), 0}
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

− p(θ(s, e+))α
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′; wmin), 0}
]

.

(14)

The only difference with Equation (9) is the last two terms in the expectation. The first corre-
sponds to the foregone surplus losses from searching while unemployed and matching with
firms to create match qualities that would pay the minimum wage. The second are the same
foregone surplus losses, but for matches that would pay a market wage larger than the mini-
mum wage.

4.2 The relationship between n̂ and n∗

Although the value functions are identical to what we had before except for the wage and the
value of unemployment, there are now additional contingencies that merit discussion. Con-
sider workers in matches of quality n ∈ {n∗(s, e), . . . , n̂(s, e)} and suppose, for the sake of
argument, that n∗(s, e) = n∗(s′, e′). If n̂(s′, e′) > n̂(s, e), these workers still receive wmin next
period but the mass of workers earning the minimum wage has increased since it now con-
tains those with match qualities belonging in the set {n̂(s, e), . . . , n̂(s′, e′)}. Conversely, if the
threshold decreases so that n̂(s′, e′) < n̂(s, e), then these workers who previously were earning
the minimum wage will now be earning the market wage w(n, s′, e′) > wmin.

Next, suppose we restrict n̂ to be constant across time. Then if n∗ decreases from one period
to the next, so that n∗(s′, e′) < n∗(s, e), all matches of quality n ∈ {n∗(s′, e′), . . . , n∗(s, e)} were
previously infeasible but now pay wmin. If n∗ increases, so that n∗(s′, e′) > n∗(s, e), all the
matches n ∈ {n∗(s, e), . . . , n∗(s′, e′)} are destroyed because they are no longer feasible.
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Figure 5: Two of the possible cases when n∗ increases

1 Nn∗t n∗t+1

n̂t+1 n̂t

Earn wmin in t + 1

Earn wmin in t

(a) One illustration of n̂ decreasing

1 Nn∗t n∗t+1

n̂t+1n̂t

Earn wmin in t + 1

Earn wmin in t

(b) One illustration of n̂ increasing

Finally, if we now allow both thresholds n∗ and n̂ to vary over time, as they do in the
model, with the only constraint being that wmin is binding, i.e. n̂ ≥ n∗ in all periods, then there
are a lot more cases to consider. The effect on total employment and average match quality
becomes more ambiguous. For example, if during a recession, the cleansing effect dominates
and the lowest matches are destroyed, i.e. n∗(s′, e′) > n∗(s, e), and the minimum wage cutoff
also decreases so that n∗(s, e) < n∗(s′, e′) < n̂(s′, e′) < n̂(s, e) than there are now less matches
in (s′, e′) paying wmin then there were in the previous period. However, depending on how
the distribution of workers across firms has changed from e to e′, this could lead to an increase
or a decrease in total employment and average match quality. This scenario is illustrated in
Figure 5a. On the other hand, suppose the cleansing effect still holds but now the minimum
wage cutoff increases from one period to the next so that n∗(s, e) < n∗(s′, e′) < n̂(s, e) <

n̂(s′, e′) as illustrated in Figure 5b. Now, it is not clear if there are more or less matches that pay
wmin and, as in the previous case, what the impacts on total employment and average match
quality are. Note that there are more cases to consider in the event that n∗(s′, e′) > n∗(s, e),
but the reasoning is the same so I omit them here. Similarly, there are several other cases to
consider if we now suppose n∗(s′, e′) < n∗(s, e).

All these cases fundamentally stem from the model being out of steady state, which is, in
the context of analyzing the effects of a minimum wage policy, the main difference between
this setting and that of Flinn (2006). In a steady state model of the labor market, the thresholds
n∗ and n̂ are constant across time. Here, their dynamics crucially determine which allocations
are destroyed and created in the economy. In Section 4.3, I shut down aggregate risk and
analyze the effects of the minimum wage in the stationary version of the model.

4.3 Binding minimum wage in the stationary environment

Before studying the effects of adding a minimum wage policy to the full model, I analyze
its effects on the stationary environment to build intuition. The stationary environment also
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serves as the benchmark to which I later compare the full model which has average match
quality varying across the business cycle. In Appendix B.3, I describe the procedure to solve
for the equilibrium outcomes in the presence of wmin for a given state. The approach consists
of first solving for the steady state equilibrium in the absence of wmin, then computing the
minimum wage cutoff n̂, and finally using the new value functions, which depend on n̂, to
check whether the participation constraint is met for matches n < n̂. I use the estimated model
parameters to do this for each education group19.

In Figure 6, I graph the percent change in total employment by productivity level and edu-
cation. The model exhibits an employment effect: total employment decreases in the presence
of an exogenous minimum wage policy across all states and education groups. Regardless of
educational attainment, the magnitude of this decreased employment is weakly increasing in
the state. As the productivity shock decreases in magnitude, employment gets closer to what it
would be in the absence of wmin. Moreover, the employment effect is decreasing in educational
attainment. The loss in employment for workers with more than a Bachelor’s degree is almost
always less than a tenth of a percent whereas it is almost always greater than ten percent for
workers with no more than a High School diploma.

Figure 6: Change in total employment

Note: The y-axis corresponds to percent changes of the steady state level of employment under a binding
minimum wage wmin = 2, 400$ relative to steady state employment without wmin. I condition on the state and
educational attainment.

Next, I present the fraction of the employed workers who earn wmin by state and educa-
tional attainment in Figure 7. Almost less then one percent of the most educated workers earn
the minimum wage. On the other hand, for workers with an Associate’s degree or less, there
is significant bunching at wmin. For all education groups, the fraction of employed workers
receiving wmin is weakly decreasing in the aggregate state of the economy. This is a feature of
the model since wages are increasing in the value of the productivity shock.

19Note that the magnitude of the productivity shocks differ by education group since it is governed by the model
parameter step. However, it is relatively constant across these groups (see Table 3), which allows us to still make
meaningful comparisons.
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Figure 7: Percent of employed earning wmin by state and educational attainment

Note: The y-axis corresponds to the percent of the the employed who earn wmin$. As before, I condition on the
state and educational attainment.

To disentangle the different channels that lead to a decrease in employment, in Table 7, for
both the highest and the lowest productivity level, I present how key model objects differ in
the presence of wmin. The average match quality increases for workers who have less than an
Associate’s degree, i.e. those most affected by the introduction of wmin. However, the percent
of the employed workers who are in the best matches decreases for these groups. This decrease
in e(N), all else held equal, would imply a decrease in average match quality. To understand
why average match quality still increases, note that unemployment significantly increases, and
especially so in the lower education groups. This increase in unemployment is mostly coming
from lower quality matches separating since the competitive wage in the absence of wmin is
smaller than wmin for these matches. To see this, I compute the change in the percentage of
employed worker who are in the lowest half of the distribution (rows 3-4). This group of
workers significantly decreases after the presence of wmin. Finally, vacancy posting is also
lower in the presence of wmin so the rate at which workers sort into better matches is lower.
Putting all this together, although the fraction of workers in the best matches decreases, the
even larger decrease in the fraction of workers in the lower quality matches dominates and so
the average match quality increases.

For the higher education groups, i.e. workers who have a Bachelor’s degree or more, the
average match quality is almost unchanged. This is because there is almost no change in com-
position: the distribution of workers across matches is roughly the same as it was in the version
without wmin. The decreases in unemployment and market tightness are also much smaller.
However, these groups see the largest increases in average wages.
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Table 7: Change relative to the unconstrained steady state in the highest and lowest state

No HS HS Some college Associate’s B.A. Master’s Prof./PhD

e(N)/ ∑n e(n) (high) -2.11 -1.22 -0.66 -0.33 -0.02 +0.00 +0.00
e(N)/ ∑n e(n) (low) -3.86 -1.92 -1.36 -0.26 -0.10 -0.03 -0.08

∑5
n=1 e(n)/ ∑n e(n) (high) -5.53 -2.80 -2.93 -0.52 +0.04 -1.05 -1.64

∑4
n=1 e(n)/ ∑n e(n) (low) -3.78 -2.22 -2.72 -1.69 +0.02 +0.00 +0.01

n (high) +2.00% +1.55% +1.17% +0.34% -0.01 % +0.00% +0.00%
n (low) +2.93% +1.91% +1.49% +0.90% -0.03% -0.01% -0.02%

u (high) +236% +359% +211% +57.7% +0.40% +0.00% +0.00%
u (low) +680% +637% +347% +141% +1.36% +0.36% +1.39%

θ (high) -35.5% -35.2% -21.9% -7.75% -0.36% +0.00% +0.00 %
θ (low) -67.1% -51.6% -33.6% -13.9% -1.24% -0.36 % -1.20%

w (high) +759% +1137% +1096% +1253% +1341% +1361 % +1476%
w (low) +760% +1172% +1127% +1308% +1423% +1426% +1549%

Note: In the first two rows, I report the change in the percentage of workers who are in the best quality matches for the highest and
lowest states. For example, for the group of workers who did not complete High School, the percent of employed who are in the best
match qualities decreases by 2.11 in the presence of a binding minimum wage and when the aggregate state is 5. I also do the same for the
fraction of workers in the lowest 4 match qualities (rows 3-4). Finally, in the other rows, I present the percent changes in average match
quality, unemployment, market tightness, and average wage relative to their steady state values in the absence of a minimum wage.

4.4 Binding minimum wage in the stochastic environment

I now return to analyzing the effects of a binding minimum wage in the full model with ag-
gregate risk. As in the previous section, the procedure to solve for the equilibrium is to begin
by solving for the equilibrium objects in the absence of wmin. Then, compute the sequence of
thresholds {n̂t}∞

t=0 and verify whether or not the matches in the set {n∗t , . . . , n̂t} are feasible
under wmin. These matches are feasible if and only if their surplus, given by Equation (14), is
positive. Computationally, this is a difficult problem because the surplus in any given period
depends not only on the future surpluses of all the other match qualities and the distribution
of workers across matches, as in the environment without a minimum wage, but in addition
it also depends on n̂ next period. Because of this, approximation methods, and in particular
the collocation method which I use to solve for the equilibrium in the absence of wmin, are not
applicable. I am currently in the process of developing a solution method for this third step.

To avoid this issue, for now I assume that all matches in {n∗t , . . . , n̂t} are consummated.
Flinn (2006) makes this same assumption but in his setting, the firm surplus is directly propor-
tional to the match value less the wage so it is less restrictive. The cost of this assumption is
that I can not assess the employment effects of the minimum wage policy since the distribution
of workers across matches remains the same. However, in this section I analyze the cyclicality
of n̂, which is closely related to the cyclicality of the average match quality, and argue that
even without the employment effects, allowing for aggregate risk captures more of the key
mechanisms of the policy.
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Table 8: Cyclicality of n̂

No HS HS Some college Associate’s B.A. Master’s Prof./PhD

E[n̂t] 9.66 9.08 8.43 7.03 2.60 1.42 2.54
sd(n̂t) .471 .850 .864 .932 .790 .675 .533
Cor(n̂t, ut) .842 .805 .803 .884 .866 .897 .837

Cor(n̂t, nt) -0.776 -0.672 -0.695 -0.697 -0.812 -0.856 -0.788

Fraction binding 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: To compute the time series and corresponding moments, the model is simulated for 3,000 periods (250 years)
where the first 600 periods (50 years) are burn-in. To alleviate the effect of initial conditions, I do this 500 times and
report the mean of each moment.

Table 8 presents the mean and standard deviation of n̂, its correlation with unemployment
and average match quality, and the fraction of the time wmin is binding for each education
group. By construction, the minimum wage is always binding. The number of match types
for which the minimum wage is greater than the competitive wage is decreasing in educa-
tional attainment. The minimum wage cutoff is strongly countercyclical: as aggregate condi-
tions worsen and unemployment increases, so does the cutoff meaning that more match types
earn wmin. Finally, n and n̂ are strongly negatively correlated: as the minimum wage cutoff
increases, so more match qualities are at wmin, the average match quality decreases. As dis-
cussed in Section 4.2, to correctly understand the effect on the distribution of workers across
matches, we would need to see how n∗ and n̂ vary together from one period to the next.

In Figure 8, I plot the percent of the employed earning wmin against the percent change
in the number of workers who survive separations and condition on the aggregate produc-
tivity level and educational attainment. First, notice that the percent earning wmin is roughly
decreasing in the state and this relationship holds regardless of educational attainment. Next,
note that across groups, the percentage is also decreasing. Indeed, for workers with less than an
Associate’s degree, in the lowest states, there are periods where everyone employed is earning
wmin. On the other hand, for the higher education groups, the magnitudes are much smaller:
even in state 1, the fraction earning wmin does not exceed 3%. Finally, in the best state, the per-
cent earning wmin is lowest and is associated with very small positive changes in the number
of workers who survive separations. In the second best state, there are slightly more workers
earning wmin, especially in the lower education groups, but these states are associated with
negative percent changes in the number of workers who survive separations.
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Figure 8: Percent of employed earning the minimum wage

(a) Didn’t complete High School (b) High School

(c) Some College (d) Associate’s

(e) Bachelor’s (f) Master’s

(g) Professional/PhD

Note: This figure plots the percent of workers earning wmin against the percent change in ∑n e+(n). As in Figure 2,
I use the latter as a measure of the business cycle. I condition on education and the aggregate state.
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This figure illustrates that the percent of workers earning wmin varies considerably depend-
ing on the state of the economy. Hence, restricting the setting to be stationary, as is done in
Section 4.3, omits by construction a crucial channel by which employment is affected by the
presence of a binding minimum wage.

5 Conclusion

In this paper, I study a general equilibrium model of the labor market with heterogeneous
match qualities, on-the-job search, and aggregate risk. I estimate the model separately by
worker education using U.S. monthly data from December 2001 to December 2019. I find that
the average quality of an employer-employee match is procyclical and explore the interaction
between the cleansing and sullying effects. Finally, I extend the model to include a bind-
ing minimum wage and study its effects in both the stationary and stochastic versions of the
model.

In future work, I plan to complement the analysis conducted in this paper by using French
matched employer-employee administrative data. These data would allow me to provide
reduced-form evidence on the cyclicality of the average match quality and to incorporate richer
worker and firm characteristics in the analysis and estimation.
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A Model Appendix

This appendix contains derivations and proofs omitted in the main text. First, in Appendix A.1,
I derive the main expression for the joint surplus, Equation (9). Next, in Appendix A.2, I
solve the Nash bargaining problem to derive the wage equation. In Appendix A.3, I prove
Proposition 1. Finally, in Appendix A.4, I describe how to solve for the equilibrium outcomes
when an exogenous minimum wage is present.

A.1 Derivation of Joint Surplus

Plugging Equation (7), Equation (6), and Equation (5) into the definition of the joint surplus
and simplifying yields

S(n, s, e) := W(n, s, e)−U(s, e) + J(n, s, e)

= f (n, s)− h(s) + βEs′|s

[
(1− δ)1{S(n, s′, e′) ≥ 0}

(
W(n, s′, e′)−U(s′, e′)

)

+ (1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′)−W(n, s′, e′), 0}

+ (1− δ)1{S(n, s′, e′) ≥ 0}
(

1− p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
J(n, s′, e′)

− p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′)−U(s′, e′), 0}
]

Next, using Equation (11), the identity max{a− b, 0} = max{a, b} − b, and the identity 1{x ≥
0} × x = max{x, 0}, the expression for total surplus can be rewritten as

S(n, s, e) = f (n, s)− h(s) + βEs′|s

[

(1− δ)max{S(n, s′, e′), 0}
(

1− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

− (1− α)p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
+ α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n, s′, e′)}

− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}
]

(15)

Conjecture that S(n, s, e) is monotonically increasing in match quality n for a fixed state (s, e).
This will be verified later (see Proposition 1 and Appendix A.3). Then the second term in the
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expectation becomes

α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n, s′, e′)}

= α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
( n

∑
j=1

1
jη ∑N

k=1
1
kη

S(n, s′, e′) +
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)
)

and the joint surplus simplifies to

S(n, s, e) = f (n, s)− h(s) + βEs′|s

[
(1− δ)max{S(n, s′, e′), 0}

×
(

1− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

− (1− α)p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

+ αp(θ(s, e+))
n

∑
j=1

1
jη ∑N

k=1
1
kη

)

+ α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)

− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}
]

= f (n, s)− h(s) + βEs′|s

[
(1− δ)max{S(n, s′, e′), 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)

+ α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)

− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}
]

The last expression is Equation (9) in the main text.

A.2 Derivation of wage

Taking the first-order conditions of Equation (10) yields

0 = (1− α)J(n, s, e)−α
(
W(n, s, e)−U(s, e)

)α ∂J(n, s, e)
∂W(n, s, e)

+ α
(
W(n, s, e)−U(s, e)

)α−1 J(n, s, e)1−α ∂[W(n, s, e)−U(s, e)]
∂W(n, s, e)

⇐⇒ 0 = SW(n, s, e)α J(n, s, e)1−α

[
1− α

J(n, s, e)
∂J(n, s, e)

∂W(n, s, e)
+

α

SW(n, s, e)
∂SW(n, s, e)
∂W(n, s, e)

]
⇐⇒ 0 =

1− α

J(n, s, e)
∂J(n, s, e)

∂W(n, s, e)
+

α

SW(n, s, e)
∂SW(n, s, e)
∂W(n, s, e)
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Using ∂J(n,s,e)
∂w(n,s,e) = −1 and ∂SW(n,s,e)

∂w(n,s,e) = 1, we get Equation (11) in the main text. Next, note that

S(n, s, e) = W(n, s, e)−U(s, e) + J(n, s, e) = SW(n, s, e) +
1− α

α
SW(n, s, e) =

1
α

SW(n, s, e)

so SW(n, s, e) = αS(n, s, e). Similarly, J(n, s, e) = (1− α)S(n, s, e). Using these, the identities
max{a− b, 0} = max{a, b} − b and 1{x ≥ 0} × x = max{x, 0}, and Proposition 1, the worker
surplus simplifies to

SW(n, s, e) = w(n, s, e)− h(s) + βEs′|s

[
(1− δ)

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
α max{S(n, s′, e′), 0}

− p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{SW(j, s′, e′), 0}

+ α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)

]

Plugging this and Equation (7) into the surplus splitting equation and rearranging terms yields
the wage equation

w(n, s, e) = α f (n, s) + (1− α)h(s) + α(1− α)βEs′|s

[
p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}

− (1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′)

] (16)
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A.3 Proof of Proposition 1

Proof. Suppose not. Then S(n+ 1, s, e) ≤ S(n, s, e), ∀(s, e). Using Equation (15) and the identity
1{x ≥ 0} × x = max{x, 0}, note that S(n + 1, s, e)− S(n, s, e) can be written as

S(n + 1, s, e)− S(n, s, e) = f (n + 1, s)− f (n, s) + βEs′|s

[

(1− δ)1{S(n + 1, s′, e′) ≥ 0}S(n + 1, s′, e′)
(

1− αp(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

− (1− α)p(θ(s, e+))
∑N

k=n+2
1
kη

∑N
k=1

1
kη

)
− (1− δ)1{S(n, s′, e′) ≥ 0}S(n, s′, e′)

(
1− αp(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

− (1− α)p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
+ α(1− δ)1{S(n + 1, s′, e′) ≥ 0}p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n + 1, s′, e′)}

− α(1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n, s′, e′)}
]

where the last term inside the expectation cancels because it is independent of n. There are
three cases to consider:

1. 0 ≤ S(n + 1, s′, e′) ≤ S(n, s′, e′) which implies 1{S(n, s′, e′) ≥ 0} = 1{S(n + 1, s′, e′) ≥
0} = 1

2. S(n + 1, s′, e′) ≤ 0 ≤ S(n, s′, e′) which implies 1{S(n, s′, e′) ≥ 0} = 1 and 1{S(n +

1, s′, e′) ≥ 0} = 0

3. S(n + 1, s′, e′) ≤ S(n, s′, e′) ≤ 0 which implies 1{S(n, s′, e′) ≥ 0} = 1{S(n + 1, s′, e′) ≥
0} = 0

Note the case S(n, s′, e′) ≤ 0 ≤ S(n + 1, s′, e′) is not possible because it contradicts
S(n + 1, s, e) ≤ S(n, s, e), ∀(s, e).
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Case 1. Since 1{S(n, s′, e′) ≥ 0} = 1{S(n + 1, s′, e′) ≥ 0} = 1, the above equation reduces to

S(n + 1, s, e)− S(n, s, e) = f (n + 1, s)− f (n, s) + βEs′|s

[

(1− δ)S(n + 1, s′, e′)
(

1− αp(θ(s, e+))− (1− α)p(θ(s, e+))
∑N

k=n+2
1
kη

∑N
k=1

1
kη

)
− (1− δ)S(n, s′, e′)

(
1− αp(θ(s, e+))− (1− α)p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
+ α(1− δ)p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n + 1, s′, e′)}

− α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n, s′, e′)}
]

Using the identity max{a− b, 0} = max{a, b} − b, the last two terms become

S(n + 1, s, e)− S(n, s, e) = f (n + 1, s)− f (n, s) + βEs′|s

[

(1− δ)S(n + 1, s′, e′)
(

1− (1− α)p(θ(s, e+))
∑N

k=n+2
1
kη

∑N
k=1

1
kη

)
− (1− δ)S(n, s′, e′)

(
1− (1− α)p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
+ α(1− δ)p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n + 1, s′, e′), 0}

− α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n, s′, e′), 0}
]

Since S(n + 1, s, e) ≤ S(n, s, e), the sum of the last two terms is weakly positive:

α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n + 1, s′, e′), 0}

− α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n, s′, e′), 0} ≥ 0

Finally, since the other two terms in the expectation are positive, we arrive at a contradiction.
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Case 2. 1{S(n, s′, e′) ≥ 0} = 1 and 1{S(n + 1, s′, e′) ≥ 0} = 0 so the above equation reduces to

S(n + 1, s, e)− S(n, s, e) = f (n + 1, s)− f (n, s)− βEs′|s

[

(1− δ)S(n, s′, e′)
(

1− αp(θ(s, e+))− (1− α)p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)

+ α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), S(n, s′, e′)}
]

Using the identity max{a− b, 0} = max{a, b} − b, the last term becomes

S(n + 1, s, e)− S(n, s, e) = f (n + 1, s)− f (n, s)− βEs′|s

[

(1− δ)S(n, s′, e′)
(

1− αp(θ(s, e+))− (1− α)p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
+ α(1− δ)p(θ(s, e+))

N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n, s′, e′), 0}

+ α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

S(n, s′, e′)

]

= f (n + 1, s)− f (n, s)− βEs′|s

[
(1− δ)S(n, s′, e′)

(
1− (1− α)p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)

+ α(1− δ)p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′)− S(n, s′, e′), 0}
]

[to be completed] As in the first case, the RHS of this equation is positive, a contradiction.

Case 3. Since 1{S(n, s′, e′) ≥ 0} = 1{S(n + 1, s′, e′) ≥ 0} = 0, the above equation reduces
to S(n + 1, s, e) − S(n, s, e) = f (n + 1, s) − f (n, s) > 0 because f (·, s) is strictly increasing, a
contradiction. This completes the proof.

A.4 Adding a minimum wage

First, note that Equation (13) simplifies to

U(s, e; wmin) = h(s) + βEs′|s

[
U(s′, e′; wmin)

+ p(θ(s, e+))α max{S(n̂(s′, e′), s′, e′; wmin), 0}
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

+ p(θ(s, e+))α
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′; wmin), 0}
]
,
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where the joint value of a match is

S(n, s, e; wmin) = W(n, s, e; wmin)−U(s, e; wmin) + J(n, s, e; wmin)

= f (n, s)− h(s)

+ βEs′|s

[
(1− δ)1{S(n, s′, e′) ≥ 0}

(
W(n, s′, e′)−U(s′, e′; wmin)

)

+ (1− δ)1{S(n, s′, e′) ≥ 0}p(θ(s, e+))
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{W(j, s′, e′)−W(n, s′, e′), 0}

+ (1− δ)1{S(n, s′, e′) ≥ 0}
(

1− p(θ(s, e+))
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
J(n, s′, e′)

− p(θ(s, e+))α max{S(n̂(s′, e′), s′, e′), 0}
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

− p(θ(s, e+))α
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′), 0}
]

.

Note here that all the terms in this equation are identical to what we had previously without
the minimum wage policy except for the last two terms in the expectation. Hence, following
the same steps as in Appendix A.1, the above simplifies to

S(n, s, e; wmin) = f (n, s)− h(s) + βEs′|s

[
(1− δ)max{S(n, s′, e′; wmin), 0}

(
1− p(θ(s, e+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)

+ α(1− δ)1{S(n, s′, e′; wmin) ≥ 0}p(θ(s, e+))
N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j, s′, e′; wmin)

− p(θ(s, e+))α max{S(n̂(s′, e′), s′, e′; wmin), 0}
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

− p(θ(s, e+))α
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{S(j, s′, e′; wmin), 0}
]

,

which is Equation (14) in the main text.

B Computational Appendix

This appendix details the solution methods used in this paper. Appendix B.1 describes the pro-
cedure to solve for the recursive stochastic equilibrium. Appendix B.2 describes the procedure
to trace out the transition back to steady state following either an unexpected productivity
shock or increase in the exogenous separation rate.

B.1 Solving the Stochastic Equilibrium

Solution Method. I solve the model as in Barlevy (2002) by approximating the total surplus
and using the collocation method. The procedure is as follows:
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1. Guess an initial distribution of workers across match types e = {e(n)}N
n=1 and a sequence

of shocks.

2. Solve for S(n, s, e) for all (n, s) pairs by approximating it as a second-order polynomial in
e with the collocation method (detailed below).

3. Invert the free entry condition to get market tightness.

4. Iterate forward using the law of motion to get e′.

5. Repeat this process in each period.

In practice, to reduce the computational burden of this solution method, I do not redo Step 2
every period. Once the collocation method has converged and I have the surplus as a function
of the distribution of workers across match qualities and the state, I store it and use it for
the following periods. Since I am solving the model T = 3000 times (the equivalent of 250
years), this greatly improves performance. After 600 periods (50 years), I re-approximate the
surplus so as to attenuate the potential impact of initial conditions. I also discard these first
600 periods, which effectively act as a burn-in phase.

Collocation Method. The collocation method20 in Step 2 imposes that the system of approxi-
mate value functions

S̃(n, s, e) = f (a(n,s), e)

holds with equality where f (·) is the right hand side of Equation (9) and S̃(n, s, e) is a second
order polynomial in e. It proceeds as follows:

1. Start by guessing a set of collocation points (e(n,s)
1 , e(n,s)

2 , . . . , e(n,s)
N ) such that ∑n e(n,s)

n ≤
1, ∀(n, s) pairs. Use these to generate the N · |s| × (N+1)(N+2)

2 matrix (which is held fixed
throughout)

X =
[
1 e(n,s)

1 × e(n,s)
1 e(n,s)

1 × e(n,s)
2 . . . e(n,s)

1 × e(n,s)
N e(n,s)

2 × e(n,s)
2 . . . e(n,s)

2 × e(n,s)
N . . . e(n,s)

N × e(n,s)
N

]
∀(n,s)

where |s| denotes the number of states (under this specification, |s| = 5 and N = 10). Let
X(n,s) denote the row corresponding to the (n, s) pair.

2. For each (n, s) pair, guess the (N+1)(N+2)
2 × 1 vector of coefficients a(n,s)

old .

3. For all (n, s) pairs, approximate the surplus by

S̃(n, s, e) = a(n,s)
0 +

N

∑
n=1

a(n,s)
n e(n) +

N

∑
k=1

N

∑
j=k

a(n,s)
j,k e(j)e(k)

Note that there are 1 + N + N(N+1)
2 = (N+1)(N+2)

2 coefficients for each (n, s) pair.

4. Compute the RHS using the approximated surplus and the market tightness from invert-
ing the free entry condition. This yields, for each (n, s) pair, f (a(n,s), e) (a scalar).

20see, e.g., Judd (1996) for a clear overview of the method.
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5. We now have the following system of equations

X(n,s)a(n,s)
new = f (a(n,s)

old , e)

So update a using

a(n,s)
new =

(
X(n,s) ′X(n,s)

)−1

X(n,s) ′ f (a(n,s)
old , e)

6. Repeat until convergence, i.e. a(n,s)
new = a(n,s)

old for all (n, s) pairs.

Implementation details. As previously stated, the model is solved and simulated for 250 years
where the first 50 years are used as burn-in. I draw the collocation points and the initial guess
for the distribution e0 from a uniform distribution on the unit interval and normalize to ensure
the sum is less than 1. I draw the guess of coefficients a from a Normal(1,0) distribution.

B.2 Impulse Response

I first describe how to solve for a steady state equilibrium, which is needed for the impulse
response exercise. I then outline how the impulse responses are computed.

Steady State. First note that, in steady state and for a given productivity level, Equations (4),
(8) and (9) reduce to

e(n) =
(

1− p(θ)
∑N

k=n+1
1
kη

∑N
k=1

1
kη

)
(1− δ)1{S(n) ≥ 0}e(n)

+
1

nη ∑N
k=1

1
kη

p(θ)
(

1−
N

∑
k=n

(1− δ)1{S(k) ≥ 0}e(k)
) (17)

κ = q(θ)(1− α)
N

∑
n=1

1
nη ∑N

k=1
1
kη

(
u+ +

n−1

∑
l=1

e+(l)
)

max{S(n), 0} (18)

S(n) = f (n)− h + β

(
(1− δ)max{S(n), 0}

(
1− p(θ)

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
+ α(1− δ)1{S(n) ≥ 0}p(θ)

N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j)

− αp(θ)
N

∑
j=1

1
jη ∑N

k=1
1
kη

max{S(j), 0}
) (19)

Rearranging Equation (17), we get

e(n) =

1
nη ∑N

k=1
1

kη
p(θ)

(
1−∑N

k=n+1(1− δ)1{S(k) ≥ 0}e(k)
)

1−
(

1− p(θ)∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
(1− δ)1{S(n) ≥ 0}+ 1

nη ∑N
k=1

1
kη

p(θ)(1− δ)1{S(n) ≥ 0}
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and, in particular, for n = N we have

e(N) =

1
Nη ∑N

k=1
1

kη
p(θ)

1− (1− δ)1{S(N) ≥ 0}+ 1
Nη ∑N

k=1
1

kη
p(θ)(1− δ)1{S(N) ≥ 0}

.

This does not depend on the number of workers in all the other matches and so, given values
{S(n)}∀n and a market tightness θ, the distribution {e(n)}∀n can be computed by iterating
backwards, i.e. by first calculating e(N), then e(N − 1), then e(N − 2), and so on.

I use a simple shooting method to solve for the steady state equilibrium. First, guess a
value of θ. Then iterate on Equation (19) until convergence to get {S(n)}∀n. As an initial guess
for the surplus, I use the present value of output less home production discounted by (1− δ),
S(n) = 1

δ ( f (n)− h), ∀n. Next, solve for {e(n)}∀n as described above. Finally, update the guess
of θ by inverting Equation (18). Repeat until θ has converged.

Note that the steady state has the following intuitive two properties. First, steady state
vacancy posting (or market tightness) is increasing in the aggregate state. Second, steady state
unemployment is decreasing in the aggregate state.

Impulse Response. I set TP = 36 so that the transition back to steady state takes 3 years. The
impulse responses eare computed as follows:

1. Start with the economy in steady state at t = −1.

2. In period t = 0, the unexpected shock occurs.

3. Guess a path of vacancy creation {θt}TP
t=0 (since θ−1, θTP+1 are known).

4. Iterate backwards to get the surplus {{S(n, st, et)}0
t=TP
}∀n (again, the surplus in the first

and last period is known).

5. Iterate forward to get the distribution of workers across match type {et+1(n)}TP
t=0 (since

e0 is inherited from t = −1 and so is known).

6. Update the guess of {θt}TP
t=0.

7. Repeat until the path for vacancies has converged.
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B.3 Steady State with Minimum Wage

In steady state, the surplus under a binding minimum wage for a given productivity level is

S(n; wmin) = f (n)− h + β

[
(1− δ)max{S(n; wmin), 0}

(
1− p(θ)

∑N
k=n+1

1
kη

∑N
k=1

1
kη

)
+ α(1− δ)1{S(n; wmin) ≥ 0}p(θ)

N

∑
j=n+1

1
jη ∑N

k=1
1
kη

S(j; wmin)

− p(θ)α max{S(n̂; wmin), 0}
n̂(s′,e′)

∑
j=1

1
jη ∑N

k=1
1
kη

− p(θ)α
N

∑
j=n̂(s′,e′)+1

1
jη ∑N

k=1
1
kη

max{S(j; wmin), 0}
]

.

(20)

The free entry condition and the law of motion are unaffected by the addition of the binding
minimum and are given by Equations (17) and (18). To solve for the steady state equilibrium
with a minimum wage, I first solve the unconstrained problem as described in Appendix B.2.
I then compute n̂ := max{n : wmin ≥ w(n)}. Finally, I redo the procedure described in
Appendix B.2 using Equation (20) instead of Equation (19).

C Estimation Appendix

C.1 Model simulated moments

I compute the simulated moments to match how the moments are calculated in the data. The
following time series are computed, for a given set of parameters, and used to compute the
moments:

1. The unemployment to employment transition rate:

UEt = ut+p(θ(st, et+))
N

∑
n=1

1
nη ∑N

k=1
1
kη

1{S(n, st, et) ≥ 0}
/

ut+

2. The employment to unemployment transition rate:

EUt =

∑N
n=1 et(n)

(
1{S(n, st, et) < 0}+ δ1{S(n, st, et) ≥ 0}

)
∑N

n=1 et(n)

3. The employer to employer transition rate:

EEt =
p(θ(st, et+))∑N

n=1 et+(n)
∑N

k=n+1
1

kη

∑N
k=1

1
kη

∑N
n=1 et+(n)

=
p(θ(st, et+))∑N−1

n=1 et+(n)
∑N

k=n+1
1

kη

∑N
k=1

1
kη

∑N
n=1 et+(n)

since when n = N, the numerator is an empty sum.
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4. The fraction of unemployed workers at period t who have been unemployed for more
than k periods:

uk
t = ut−k

k−1

∏
j=0

(
1−

N

∑
n=1

1
nη ∑N

k=1
1
kη

p(θ(st−k+j, et−k+j+))1{S(n, st−k+j, et−k+j) ≥ 0}
)

/ut

5. The mean wage:

wt =
N

∑
n=1

et(n)

∑N
k=1 et(k)

w(n, st, et)

6. The average starting wage out of unemployment:

wUE
t =

ut+p(θ(st, et+))∑N
n=1

1
nη ∑N

k=1
1

kη
w(n, st, et)

ut+p(θ(st, et+))
=

N

∑
n=1

1
nη ∑N

k=1
1
kη

w(n, st, et)

7. The average starting wage following an EE transition:

wEE
t =

∑N
n=1 et+(n)p(θ(st, et+))

1
nη ∑N

k=1
1

kη
∑N

j=n+1 w(j, st, et)

∑N
n=1 et+(n)p(θ(st, et+))

∑N
k=n+1

1
kη

∑N
k=1

1
kη

=
∑N

n=1 et+(n) 1
nη ∑N

k=1
1

kη
∑N

j=n+1 w(j, st, et)

∑N
n=1 et+(n)

∑N
k=n+1

1
kη

∑N
k=1

1
kη

C.2 MCMC algorithm

Baragatti, Grimaud, and Pommeret (2013) build on Chernozhukov and Hong (2003) to address
two issues. First, in some cases, the sampler does not explore the full parameter space. In par-
ticular, the tails can be left unexplored. Second, the samples from one iteration to the next can
be very correlated. The algorithm proposed by Baragatti, Grimaud, and Pommeret (2013) to
alleviate these concerns is as follows. Let Nc denote the number of chains. The set of param-
eters is ϕ = (ϕ1, ϕ2, . . . , ϕNc) with associated datasets z = (z1, z2, . . . , zNc). The observed data
is x. The state associated with chain i is {zi, ϕi}. The algorithm to obtain a Markov chain of
length nc proceeds as follows:

1. Choose temperatures T1 = 1 < T2 < T3 < · · · < TNc and tolerance levels ε1 < ε2 <

· · · < εNc . Chains of higher order are associated with high tolerance levels and higher
temperatures so they are able to move more freely in the parameter space. Lower order
chains give more precise approximations of the target posterior.

2. t = 1. Start with an initial value for the set of parameters for each chain, {ϕ
(0)
i , z(0)i }

Nc
i=1.

In practice, I choose a different initial value for each education group.

3. For t ∈ {2, . . . , nc}, execute the following two types of moves:

(a) Local moves. For i ∈ {1, 2, . . . , Nc}:
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i. Generate ϕ′i from the transition kernel qi(·|ϕ(t−1)
i ) whose variance is an increas-

ing function of the temperature Ti.

ii. Generate z′i from ϕ′i (i.e. simulate model and compute moments). Set
(ϕ

(t)
i , z(t)i ) = (ϕ′i, z′i) with probability

min
{

1,
π(ϕ′i)qi(ϕ

(t−1)
i |ϕ′i)

π(ϕ
(t−1)
i )qi(ϕ′i|ϕ

(t−1)
i )

}
1{ρ(S(z′i), S(x)) < εi}(z′i)

where ρ is a distance function and S is a statistic.

(b) Exchange moves. Since lower order chains may have some difficulties exiting local
modes, Nc exchanges are proposed at each iteration. Nc pairs of chains (i, j) with
i < j are chosen uniformly from all possible pairs with replacement. The states of
i, j are exchanged if

ρ(S(zj), S(x)) < εi

The parameter estimates are set to the mean of the coldest chain:

ϕ̂MCMC =
1
nc

nc

∑
i=1

ϕi
1

Implementation Details. I set the number of chains to Nc = 25 and the number of iterations to
nc = 3000. So the model is solved and simulated 75,000 times in total. The largest temperature
is set to 2.

C.3 Untargeted moments

In Table 9, I present the model fit to a set of moments which were not targeted in estimation.
The model does a good job at matching the volatility of the transition rates, but is very far from
matching the wage dispersion in the data, as measured by the wage P90/P10.

Table 9: Untargeted moments

No HS HS Some college Associates BA Masters Prof./PhD

Data Model Data Model Data Model Data Model Data Model Data Model Data Model

sd(EU) .006 .000 .003 .000 .003 .000 .002 .000 .002 .000 .002 .000 .002 .000
sd(UE) .045 .059 .058 .074 .069 .083 .072 .082 .067 .091 .085 .066 .117 .107

E[wt] 1982 1934 3028 2316 3119 2595 3692 3427 5207 7102 6194 8989 7641 7120
E[wP9010

t ] 6.83 1.79 5.16 1.69 7.19 1.61 5.08 1.58 5.79 1.45 5.19 1.49 4.86 1.38
sd(wP9010

t ) .721 .054 .286 .066 .652 .065 .408 .060 .430 .051 .456 .044 .608 .049

sd(wEE
t /wt) .107 .023 .058 .029 .081 .027 .021 .029 .067 .025 .105 .020 .165 .034

sd(u3
t ) .091 .073 .106 .084 .144 .091 .098 .084 .106 .069 .117 .047 .122 .089

E[u5
t ] .340 .167 .361 .122 .362 .133 .311 .108 .343 .039 .317 .036 .372 .055

Note: To compute the time series and corresponding moments, the model is simulated for 3,000 periods (250 years) where the first 600 periods (50 years) are
burn-in. To alleviate the effect of initial conditions, I do this 500 times and report the mean of each moment.
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