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Abstract

A number of influential papers study monopsony power in static models. Among the
papers that model dynamics with a finite number of firms, none model the process of
human capital accumulation by workers. In this paper, I show that this has important
implications for the measurement and welfare consequences of monopsony power. How
large are properly measured markdowns? And what are the welfare gains of implement-
ing competitive allocations once we have accounted for human capital accumulation?
To answer these questions, I introduce a novel model of dynamic monopsony in which
a large non-atomistic firm competes with a finite number of homogeneous firms for
workers who learn on-the-job. The markdown has an additional dynamic term reflect-
ing expected future changes in worker human capital. I estimate the model using rich
matched employee-employer administrative data from France and find that the welfare
gains from forcing firms to offer workers their marginal product are large. Moreover, the
welfare losses are underestimated by 81% when ignoring human capital accumulation.
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Introduction

Since the seminal work of Robinson (1932), a number of influential papers have attempted to
measure monopsony power in static models.1 Among the papers with dynamic oligopsony,2

none considers the process of human capital accumulation by workers. However, there are
two well-understood features of labor markets that, put together, give good reason to believe
that monopsony should be studied in tandem with human capital accumulation: 1. monop-
sonists restrict employment by lowering wages below the marginal product of labor, and 2.
employment is tightly linked to human capital accumulation through on-the-job learning.

In this paper, I show that these omissions have important implications for the measure-
ment of monopsony power and its welfare costs. By ignoring human capital, existing work
attributes wage markdowns, the gap between the wage and the marginal product of labor, to
monopsony. What if workers are simply being paid less than their marginal product because
of backloading coming from dynamic human capital accumulation? Or, in contrast, what if
this provides a counterbalancing force to the standard static incentives to price below the
marginal product because monopsony power induces the firm to care about the human capital
accumulation of workers who are not at the firm? When allowing for dynamic human capital
accumulation, the welfare implications of monopsony power become theoretically ambiguous
and must be assessed using a quantitative model. What magnitude are properly measured
markdowns? And what are the welfare gains of implementing competitive allocations once
we have properly accounted for human capital accumulation?

I answer these questions by studying a dynamic model of imperfect competition in labor
markets which I then quantify using French administrative data. I make five contributions.
First, I document novel features of French local labor markets. I find that most markets are
concentrated and, in particular, are composed of one large leading firm which is significantly
larger than the other firms. Second, informed by this empirical evidence, I propose a model
of a labor market3 in which one large non-atomistic firm competes for workers with a finite
number of homogeneous firms. Third, I modify tools from the machine learning literature on
deep reinforcement learning to solve an otherwise intractable model. Fourth, I characterize
the efficient allocation and show that the wage markdown, which now has a dynamic com-
ponent reflecting human capital accumulation, no longer measures the gap to the efficient
outcome. Finally, I use the estimated model to quantify the welfare losses from monopsony

1 Static theories of monopsony include Manning (2011), Card, Cardoso, Heining, and Kline (2018), Dube,
Giuliano, and Leonard (2019), MacKenzie (2019), Lamadon, Mogstad, and Setzler (2022), Berger, Herken-
hoff, and Mongey (2022), and Yeh, Macaluso, and Hershbein (2022).

2 Jarosch et al. (2023), Berger, Herkenhoff, Kostøl, and Mongey (2023), and Gottfries and Jarosch (2023).
3 Throughout the paper, I define a local labor market to be the combination of a 4-digit occupation code

and a commuting zone.
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in French labor markets and to decompose what fraction of these losses can be attributed to
the dynamics from human capital accumulation.

Measurement. I use rich employee-employer administrative data from France on the near-
universe of workers to document several salient features of local labor markets. Defining a
market as the intersection of a 4-digit occupation code and a commuting zone, I find that
the majority of markets in France are very concentrated. Moreover, these markets employ
a significant portion of the labor force. I also document that most markets are composed
of one large leading firm, defined in terms of its employment share, which is significantly
larger than all the other firms in the market. Finally, I examine the competitive structure
of markets and find suggestive evidence that the leader does not strategically compete with
the other firms.

Theory. Motivated by this empirical evidence, I propose a novel theory of imperfect com-
petition in the labor market. The key departure relative to existing models of monopsony is
that both the worker and firm problems are dynamic because of human capital accumulation.
I model segmented markets composed of a non-atomistic dominant firm and a finite number
of homogeneous peripheral firms. Workers are heterogeneous in their general human capital
which they accumulate on-the-job: human capital appreciates when employed and depreci-
ates when non-employed. Firms compete for workers by posting a menu of wages for each
human capital level. There are four sources of monopsony power: 1. workers have idiosyn-
cratic preferences for the different firms (and non-employment); 2. workers derive utility
from firm-specific non-wage amenities; 3. workers are subject to switching costs whenever
they transition from one firm to another or out of non-employment; and 4. the market is
granular, i.e. there are a finite number of firms.

I assume the peripheral firms behave as if they are atomistic, effectively making them
static monopsonists. They can exploit the market power due to the four sources mentioned
above but do not internalize the dynamic effects when setting wages. In contrast, the dom-
inant firm is a dynamic monopsonist. In addition to internalizing the effect its choice of
wages has on its own labor supply curve, it also internalizes its effect on its future workforce
and employment at the rival firms and non-employment. This offsets the standard incentive
monopsonistic firms have to price below the marginal product of labor and introduces a
tradeoff between current and future profits. Decreasing wages increases revenue today, but
the future distribution of workers is less skilled. This is because some of the workers who
would otherwise have been employed become non-employed and thus see their skills decay.
In addition to the standard static term, the wage markdown of the dominant firm thus has
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a dynamic component reflecting expected changes in human capital.
In static models, the markdown, defined as the gap between the wage and the marginal

product of labor, is equal the Lerner index of the firm’s labor supply elasticity. The mark-
downs in this setting are still equal to the Lerner index, but for the dominant firm, the
markdown is dynamic. It contains an additional term that reflects expected future changes
in human capital. Moreover, in static models, the markdown also measures the distance
between the wages offered and the wages that decentralize the efficient outcome and in that
sense, is a sufficient statistic for the welfare losses due to monopsony.4 To understand if this
still holds with human capital accumulation, I then study the problem of a social planner
who chooses the allocation of workers across firms and non-employment to maximize market-
wide welfare. I show that setting both the dominant and peripheral wages equal to the static
marginal product of labor decentralizes the efficient allocation. Since the marginal product
of labor includes a dynamic term reflecting expected changes in future human capital, the
dominant firm’s markdown is no longer a sufficient statistic to measure the welfare losses.

Results. I estimate the model separately for two different representative markets, each
containing half of the workers in France. Markets are split according to the employment share
of the leader: the bottom and top representative markets correspond to markets where the
leader’s share is below and above the median, respectively. The most pervasive characteristic
of these two resulting markets is that they are composed of a large leading firm, which
employs considerably more workers than the other firms. The bottom representative is less
concentrated, but the leading firm still employs roughly 5% of workers in the market, about
10 times more than the other firms. In contrast, in the top representative market, the leader
employs 36% of workers, which is 14 times more than other firms.

I use the estimated model to quantify the welfare losses from monopsony in these two
markets. I find that the peripheral firms pay workers 94 and 62 percent of their static
marginal product, on average, in the bottom and top representative markets, respectively.
In contrast, workers are not as sensitive to wage changes at the dominant firm which allows
it to have a slightly lower markdown than the peripheral firms. The dominant firm pays
workers 92 and 55 percent of their dynamic marginal product, on average, in the bottom
and top representative markets, respectively. However, the dominant firm’s markdown is
not equal to the gap between the wages offered and the wages that decentralize the efficient
allocation. I find that the markdown underestimates this gap: wages are only 35 and 18
percent of the efficient wages for the bottom and top representative markets, respectively.

Next, I study the effects of forcing all firms to price competitively. This entails raising
4 Note the markdown does not capture the actual losses, but the distance to the efficient allocation.
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wages by several orders of magnitude to match the wages that decentralize the efficient out-
come. Since the dominant firm has more market power, leveling the playing field implies
larger wage increases at the dominant firm relative to the peripheral firms. Moreover, output
per worker is higher at the dominant firm which also benefits from a productivity advantage.
I find that welfare is 59% and 68% smaller relative to the planner’s solution in the bottom
and top markets, respectively. These losses are in part driven by large output differences as
employment at the dominant firm is much lower than it would be if it offered higher wages.
The efficient allocation not only involves reallocation across firm types, i.e. from the periph-
eral firms to the more productive dominant firm, but also an employment effect. Therefore,
there are also significant human capital gains to forcing firms to price competitively: I find
that the aggregate distribution of human capital shifts to the right (less low skill and more
high skill workers) in the efficient outcome.

Finally, to illustrate the importance of accounting for human capital accumulation, I do
a decomposition exercise where I shut off the dynamics in the model. I then solve for the
efficient outcome and compute the welfare losses relative to the decentralized equilibrium.
These are considerably smaller than the ones estimated in the full model: the welfare losses
are underestimated by 81 percent, on average, when ignoring the human capital accumulation
of workers.

Literature. This paper contributes to several literatures. The most closely related work
is a growing literature that models imperfect competition in the labor market (Burdett
and Mortensen 1998; Manning 2003; Card, Cardoso, Heining, and Kline 2018; Kroft, Luo,
Mogstad, and Setzler 2021; Lamadon, Mogstad, and Setzler 2022; Berger, Herkenhoff, and
Mongey 2022; Engbom and Moser 2022; Gottfries and Jarosch 2023; and Jarosch, Nimczik,
and Sorkin 2023, amongst many others). I depart from these benchmark frameworks in
two main ways. First, I add worker heterogeneity in the form of endogenous human capital
accumulation. This allows me to not only quantify inefficiencies due to market power across
firms, but also within a firm. Second, I add dynamics: workers and firms are forward-
looking and make their choices by fully internalizing their dynamic effects.5 This addition
significantly alters the measurement and welfare implications of monopsony. The dominant
firm’s markdown is dynamic with a new term reflecting expected changes in human capital
and no longer fully measures the inefficiency.

5 As mentioned above, there are several other papers that model dynamic monopsony. The seminal work
of Burdett and Mortensen (1998) considers the limiting case r/λ0 → 0 where r is the discount rate shared
by workers and firms and λ0 is the Poisson arrival rate of a job offer for unemployed workers. As explained
in their footnote 4, this implies firms post wages to maximize steady-state profits, hence effectively shutting
off dynamics.
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In all frictional models of the labor market, firms have monopsony power. Hence, search
and matching models in which workers differ in their human capital (e.g. Barlevy 2008 and
Bagger, Fontaine, Postel-Vinay, and Robin 2014, Lentz and Roys 2015, Flinn, Gemici, and
Laufer 2017, amongst many others) can also be used to study the interaction of monopsony
and on-the-job learning. In contrast, my model has four distinct sources of firms’ market
power: moving costs (isomorphic to search frictions), preference heterogeneity, amenities,
and a finite number of employers. This granularity provides a more transparent mapping
to the data and is better suited for analyzing policies. In this regard, this work strongly
complements Gottfries and Jarosch (2023) who also argue in favor of explicitly modeling
granular markets in the context of studying non-compete bans.

The methodology developed extensively draws upon Ericson and Pakes (1995)-style dy-
namic oligopoly models6 and the large literature on dynamic discrete choice (e.g. the seminal
works of Miller 1984; Wolpin 1984; Rust 1987; and Hotz and Miller 1993, amongst many
others7). The model can be recast as a dynamic model of multi-product firms where, instead
of competing in the product market for consumer demand (oligopoly), firms are competing in
the input market for workers (oligopsony). An important departure is that, in these models,
the demand for products is static, whereas here, the supply of workers is dynamic because of
human capital accumulation. However, by assuming the peripheral firms are atomistic, the
strategic interactions in my model are trivial as the peripheral firms offer workers a constant
static markdown. Another contribution is to make progress on the tractability of this class
of models. I rely on methods developed in the machine learning literature on deep reinforce-
ment learning to solve for the decentralized equilibrium. In particular, I use neural networks
to approximate key model objects (values, policies, and laws of motion) and modify the
deep deterministic policy gradient algorithm proposed by Silver et al. (2014) and Lillicrap
et al. (2015) to solve the firm problem. Importantly, this allows me to bypass the curse of
dimensionality present because the dominant firm is non-atomistic and has a high dimen-
sional aggregate distribution as a state variable. Thus, this paper also relates to a growing
line of research using neural networks to solve general equilibrium models (Maliar, Maliar,
and Winant 2021; Azinovic, Gaegauf, and Scheidegger 2022; Batzer 2022; Han, Yang, and E
2022; Kahou, Fernández-Villaverde, Perla, and Sood 2022; Kase, Melosi, and Rottner 2022;
Duarte, Duarte, and Silva 2023; Fernández-Villaverde, Hurtado, and Nuño 2023). Finally,
in estimation, I build on the literature on estimating models of dynamic discrete choice.
I use a two-step identification procedure which allows me to first estimate the supply-side
parameters from the conditional choice probabilities and the aggregate law of motion using

6 See Doraszelski and Pakes (2007) for a great survey.
7 See Aguirregabiria and Mira (2010) for a recent survey of this literature.
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indirect inference and then estimate the remaining technology parameters by targeting the
wages.

Outline. The rest of the paper is structured as follows. In Section 1, I describe the data
and document several salient features of French labor markets. Section 2 introduces the
model and Section 3 studies the planner’s problem and characterizes the efficient allocation.
In Section 4, I estimate the model and assess the model fit. Section 5 quantifies the hu-
man capital costs of monopsony. Finally, Section 6 concludes. Appendices A to D provide
additional details on the data, model, omitted proofs, computation, and estimation.

1 Data and Descriptive Evidence

In this section, I provide a brief overview of the datasets used and document several salient
features of French labor markets that will guide modeling decisions.

1.1 French administrative data

I use French administrative data commonly referred to as Déclarations annuelles de données
sociales (DADS).8 The DADS are mandatory forms that all businesses in France must submit
annually. The French National Statistical Institute, Institut national de la statistique et des
études économiques (INSEE), uses these forms to create matched employer-employee data
allowing researchers to link workers and firms over time. I use two main datasets:

Short panel. The first dataset I use is the DADS-Postes, which covers the near-universe of
jobs in France. This is a spell-based dataset, meaning there is one observation per individual-
job-year.9 Hence a worker with two jobs appears as two distinct observations. However, the
worker IDs are reshuffled every two years, making it impossible to match workers across
time for more than two periods. I use this to document descriptive evidence on French labor
markets which I present in Section 1.2 and Section 1.3.

Long panel. The second dataset I use is the DADS-Panel. It contains the full employment
history of all workers born in October of even years before 2002 and of every year from 2003
onwards. I treat it as a representative sample of the French labor force which can be used

8 This translates to “Annual declaration of social data".
9 For example, if a worker has two jobs in a given year, they appear as two separate observations with the

same worker ID.
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for longitudinal analysis.10 Once a worker enters the dataset, all her subsequent employment
spells are observable. I use this to measure human capital when I estimate the model.

Both sources are at the annual frequency and contain roughly the same worker-level
variables.11 These include detailed occupation codes, industry codes, zipcodes of residence
and work, wages, hours, and demographics such as age and gender. See Appendix A.1 for a
description of the primary variables used. However, the DADS has several drawbacks. The
main disadvantage in the context of this study is that worker education is not observable.
Instead, I use other worker characteristics to estimate unobserved human capital, which I
describe in detail in Section 4.3. Another limitation is the absence of firm balance sheet data.
While many firm and establishment level information such as wage bills and employment
are available, data on revenue or input choices is not.12 Finally, since workers only appear
in the data when they are employed, we cannot distinguish between non-employment and
unemployment. For this reason, I do not model unemployment and restrict workers to be
either employed or non-employed.

Sample construction. I apply the same sample construction rules for both datasets. I
focus on workers aged 16-65 who are employed in the private sector in metropolitan France.
Furthermore, I exclude workers whose hourly gross wage falls outside three standard devi-
ations of the mean. For the DADS-Postes, I use the repeated cross-section of 2014-2015
(henceforth DADS-Postes 2015). For the DADS-Panel, I go back to 2003,13 the first year fol-
lowing a major change in occupation codes, up until 2016. An additional period after 2015
is needed to identify non-employed workers in 2015. In Table 1, I report basic summary
statistics for both samples in 2015.

10 There are birth month effects in labor markets as well as seasonality patterns to births that could in
principle induce non-random selection into this subsample.

11 Firm and establishment-level data are also available in the DADS-Entreprises and DADS-Etablissements
datasets, respectively. I do not make use of these.

12 Firm balance sheet information for French firms exists (the FARE/FICUS datasets), but due to legal
restrictions is not available to researchers in North America.

13 The DADS-Panel is also bigger after 2003. Before 2003, only workers born in October of even years are
in the dataset, whereas after (and including) 2003, every worker born in October is included.

8



Table 1: Sample Summary Statistics

Cross-section Panel
Sample Size
Workers 12,923,194 785,262
Firms 1,168,416 190,674
Year 2015 2015

Demographics
Men (%) 56 56
Mean Age 40 39

Annual Earnings
Mean 23,452 23,967
SD 12,636 25,567
p25 13,832 5,487
Median 23,140 19,894
p75 31,412 33,040

Note: This table reports summary statistics for the DADS-
Postes 2015 and the DADS-Panel 2015. Both samples are
constructed as described in Section 1.1. Wages are in 2015
euros.

1.2 Defining a labor market

Deciding how to set the boundaries of a labor market is a crucial choice that will affect both
estimation and results. On the one hand, too narrow of a definition mechanically results
in the creation of artificial concentration. It also risks separating workers who would be
applying for the same jobs. On the other hand, if defined too broadly then it may lead
to markets where firms do not overlap in their competition for workers. This risks pooling
workers together that do not have the same jobs.

It is standard in the monopsony literature to define a labor market as some combination
of geography, occupation, and/or industry. There are varying levels of granularity observable
for each in the data: the whole of France, regions, départements, and commuting zones;14

1-,2-, and 4-digit occupation codes; and 3-digit industry codes. To the best of my knowl-
edge, only two other studies use the same data and also need to define labor markets.15

Azkarate-Askasua and Zerecero (2022) use the intersection between a commuting zone, a
14 Before the 2016 reform, metropolitan France was split into 22 regions, 96 départements, and 305 com-

muting zones.
15 Morlacco (2020) also uses French data, but instead uses trade and production data to study buyer power

in input trade.
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3-digit industry code, and a 2-digit occupation code and Arquié and Bertin (2022) use the
intersection of a 4-digit occupation code and a commuting zone. I follow Arquié and Bertin
(2022) and define a labor market in France as the intersection of a 4-digit occupation code
and a commuting zone.

This decision is based on several factors. Using 1- or 2-digit codes for occupation results
in very different occupations being grouped together. Table A.1 in Appendix A.3 illustrates
occupation coding in the DADS for one of the 1-digit occupations, “Intermediate Professions”,
which includes the 2-digit occupation “Intermediate health and social work professions”.
Within this 2-digit occupation code, there are 21 different 4-digit occupations such as “nursing
executives”, “childcare workers”, “midwives”, “eyewear opticians”, and “pharmacy assistants”.
Clearly, these are very different professions. Childcare workers and eyewear opticians are not
applying for the same jobs. Table 2 reports self-flow rates and Table A.2 in Appendix A.3
reports additional statistics for both occupation codes. The self-flow rate along a dimension
x (e.g. a region or a market) is the percent of workers who were labeled as x in t − 1 and
remain so in t. Although not a sufficient statistic, it is commonly reported to assess the
accuracy of a market segmentation. Broadly speaking, a local labor market is the set of
all jobs a worker would accept, therefore a helpful metric is how many workers remain in
the same market over time. As expected, the self-flow rates are higher for the less granular
occupation codes: 24% of workers switch 4-digit occupations from one year to the next,
compared to 17% for 2-digit occupations. For geography, I follow the literature and use
commuting zones. A commuting zone is a geographical unit defined by INSEE within which
most workers both live and work.16 A map of the 304 metropolitan commuting zones in
France is relegated to Figure A.1 in Appendix A.4. From one year to the next, roughly 7.2%
of workers work in a different commuting zone, compared to 6.7% for the département (96
in metropolitan France), and 2.9% for the region (13 in metropolitan France). Summary
statistics for commuting zones can be found in Table A.3 in Appendix A.4. Finally, I do not
additionally condition on the industry because that would result in the mechanic creation
of concentration. Defining a market as the intersection of a 4-digit occupation code, a
commuting zone, and a 3-digit industry code yields 1,287,951 distinct markets with a self-
flow rate in 2015 of approximately 70%.

16 I use the 2010 classification of commuting zones. Details on methodology can be found on INSEE’s
website.
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Table 2: Self-Flow Rates

Rate (%)
Region 97.12
Department 93.31
Commuting Zone (CZ) 92.81
3-digit ind 88.95
2-digit occ 83.05
4-digit occ 75.54

2-digit occ×CZ 79.43
4-digit occ×CZ 73.09
4-digit occ×CZ×3-digit ind 69.80

Note: Calculated in the DADS-Postes from 2014
to 2015.

There are 360 4-digit occupations and 305 commuting zones yielding 96,922 distinct labor
markets with a self-flow rate of 73%. The majority of market outflows are due to occupation
switching. Table 3 reports standard summary statistics on markets. The average market has
45 firms, 158 workers, and an employment Herfindahl-Hirschman Index (henceforth HHI) of
2,907. The employment HHI, the sum of the squared employment shares of firms in a market,
is a standard measure of market concentration (see Appendix A.2 for more). A market with
an employment HHI of 2,907 would be classified by the Horizontal Merger Guidelines (DOJ
and FTC 2010) as highly concentrated. For example, a market with 4 firms, 3 of which
employ 30% of workers corresponds to an employment HHI of 2,800. The average worker
is in a market with 1,111 firms, 5,170 workers, and an employment HHI of 1,222. This is
right below the 1,500 cutoffs the Horizontal Merger Guidelines (DOJ and FTC 2010) use to
classify a market as moderately concentrated. For example, a market with 10 firms of equal
size has an employment HHI of 1,000. Table A.4 in Appendix A.6 reports the same statistics
when defining markets as the intersection of a 2-digit occupation code and a commuting
zone.
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Table 3: Market Summary Statistics

Mean SD p25 Median p75 p95
Number of Firms (unweighted) 45 232 4 11 33 162
Number of Firms (weighted) 1,111 2,920 49 167 625 6,925
Number of Workers (unweighted) 158 890 8 30 104 581
Number of Workers (weighted) 5,170 12,823 245 820 2,994 31,412

Employment HHI (unweighted) 2,907 2,939 734 1800 3,956 10,000
Employment HHI (weighted) 1,222 2,144 110 351 1,150 7,497

Number of Markets 96,922

Note: Unweighted statistics computed with equal weights for each market. Weighted statistics use
market employment as weights.

1.3 Market Structure

I now document several features of the competitive structure of labor markets in France
which I will use to inform modeling assumptions in Section 2.

Most markets have a leader. I define the leading firm in a market as the firm with the
highest employment share. Figure 1 looks at the distribution of the leader’s employment
share across markets. In 65% of markets (blue solid line), the largest firm has an employment
share bigger than 20%, and 35% of workers in France (green dashed line) are employed in
these markets. This distribution has a heavy right tail: in 20% of markets, the share is larger
than 60%. However, only about 10% of workers are in these markets.
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Figure 1: Prevalence of a leading firm

Although informative, Figure 1 does not capture the whole picture. It could be that the
markets with the largest leaders are simply ones with a very small number of firms. As Table 3
shows, these markets also tend to employ fewer workers. I investigate this further by looking
at the joint distribution of the market size (number of firms in a market) and a measure of how
big the leader is relative to the other firms. In Figure 2, I report the employment-weighted
heatmap between two variables: 1. the ratio of the leader’s employment share to the mean
employment share of the non-leader firms, and 2. the market size. Each number corresponds
to the percentage of workers in France that are employed in these types of markets. The
top left corner corresponds to the most concentrated markets: there are relatively few firms
and the leader is significantly bigger than the other firms. Approximately 2% of workers are
employed in these markets. Markets in the bottom left corner employ a larger fraction of
workers. These are markets where there are fewer firms and the size of the leader relative
to other firms is smaller. Nonetheless, these are still concentrated markets: consider for
example the 1.97% of workers employed in markets where the leader is 4.8-7.3 times bigger
than the other firms and there are 18-37 firms in total. Assuming the non-leader firms are
of the same size and using the conservative bounds implies the leader and non-leader shares
are approximately 12% and 2.5%, respectively. Lastly, perhaps the most striking feature of
this heatmap is that conditional on the market having a very large number of firms, the
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gap between the leader and non-leader firms is also very large, i.e. there is no mass in the
bottom right corner. See Figure A.2 in Appendix A.5 for the heatmap between the leader’s
employment share and the number of firms in the market.
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Market Size

Note: This plots the joint distribution of the ratio of the leader’s employment share to the mean
employment share of the non-leader firms and the market size (number of firms). Both variables are
employment-weighted and split into deciles so that each row and column contains 10% of workers. For
example, 10% of workers are in markets where there are between 1 and 18 firms.

Figure 2: Heatmap between Size of Leader and Number of Firms (Deciles)

The leader is much bigger than the other firms. As the y-axis of Figure 2 suggests,
the vast majority of workers in France are in markets where the largest firm employs con-
siderably more workers than the other firms in the market: 90% of workers are in markets
where this ratio is larger than 4.8. In Table 4, I report summary statistics for several different
measures to corroborate this finding. The average worker is in a market where the leader’s
share is 20%, which is six times larger than the employment share of the second largest firm
and 127 times larger than the mean employment share of non-leader firms. These moments
are driven by a heavy right tail: the median worker is in a market where the leader employs
11% of workers, which is 22 times more than the average non-leader firm and 50% more than
the second biggest firm. The corresponding unweighted numbers are much larger, providing
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further evidence that the most concentrated markets do not employ the most workers. Ta-
ble A.5 in Appendix A.6 reports the same statistics when defining markets as the intersection
of a 2-digit occupation code and a commuting zone.

Table 4: Leader Summary Statistics

Mean SD p25 Median p75 p95
Leader Share (unweighted) 32 22 15 28 48 75
Leader Share (weighted) 20 22 5 11 25 73
Z-score of Leader Share (unweighted) 32 22 15 28 48 75
Z-score of Leader Share (weighted) 20 22 5 11 25 73

Leader Share / Second Share (unweighted) 3.1 8.0 1.3 1.8 2.6 8.0
Leader Share / Second Share (weighted) 6.0 34 1.2 1.5 2.5 12

Mean Non-Leader Share (unweighted) 7.0 7.2 2.0 4.6 9.5 23
Mean Non-Leader Share (weighted) 1.4 2.5 0.2 0.5 1.5 5.5
Leader Share / Mean Non-Leader Share (unweighted) 11 64 3.0 5.1 10 33
Leader Share / Mean Non-Leader Share (weighted) 127 911 10 22 55 1,250

Note: Unweighted statistics computed with equal weights for each market. Weighted statistics use market employ-
ment as weights. Markets with only one firm (leader’s employment share = 100%) are excluded.

Strategic Interactions. Finally, I examine the extent to which the leader and non-leader
firms compete. Absent firm balance sheet data, I look at changes in wages. I estimate the
following market-level specification,

∆wN
i,t = β0 + β1∆wL

i,t + ϵi,t (1)

where i indexes the market, t is a year, and ∆wj
i,t is the mean hourly wage growth, in

percents, for workers at firm type j ∈ {Leader,Non-Leader} from t − 1 to t. The leader in
a market is defined as the firm with the largest employment share in t − 1. Figure 3 plots
changes in the mean non-leader hourly wage as a function of changes in the mean leader
hourly wage. The dashed green line is the regression line. The slope is β̂1 ≈ 0.1 (column
(1) of Table 5): a 1% increase in mean wages offered by the dominant firm is associated
with a 0.1% increase in mean wages offered by the non-leader firms. Given the response
is biased upwards due to common market-level shocks faced by all firms, a 0.1% response
is surprisingly low and suggests that the leader and non-leader firms do not strategically
interact. In a fully competitive setting, the expected response would be 1-1, i.e. the 45-
degree line in Figure 3. Weighting by employment (column (2)) and adding fixed effects for
both occupation and commuting zone (column (3)) does not alter the result.
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Figure 3: Wage Response of Non-Leader Firms

Mean Non-Leader Wage
(1) (2) (3)

Mean Leader Wage 0.130∗∗∗ 0.126∗∗∗ 0.145∗∗∗

(0.005) (0.051) (0.045)
Fixed Effects N N Y
Weighted N Y Y
R2 0.0135 0.0058 0.2676
N 93,183 93,183 93,183

Table 5: Estimates of Equation (1)

Note: Computed in DADS-Postes 2014-2015 for markets with more than one firm. Figure. This is a
binned scatter plot with 100 bins: for each percentile along the x-axis, the mean value of the y-variable is
plotted. The dashed green line is the regression line corresponding to column (1) in the table and the solid
gray line is the 45-degree line. Table. I exclude markets for which wage growth falls outside 3 SDs of the
mean. Fixed effects for 4-digit occupation and commuting zone. Standard errors are presented in
parentheses.

1.4 Taking stock

Defining labor markets as the intersection of a 4-digit occupation code and a commuting
zone, I find that many markets in France are concentrated. Moreover, these concentrated
markets employ a significant fraction of workers. I also show that markets are composed
of a large leading firm that is much bigger than other firms in the market. Finally, I find
suggestive evidence that the leader does not compete with the non-leader firms. These
features of the data highlight the need for a model in which the largest firm knows it is big
and fully internalizes how it affects market-wide outcomes.

2 Model

In this section, I present a model of a monopsonistic labor market in which workers accumu-
late general human capital over time. The market is composed of one large non-atomistic
firm that competes with a finite number of homogeneous firms for workers. Importantly,
both workers and firms make dynamic choices. An accompanying table summarizing model
notation can be found in Appendix B.1.
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2.1 Setup

Environment. Time is discrete and the horizon is infinite, t = 1, 2, . . . . There is no
aggregate risk.

Agents. The economy is populated by a continuum of workers with measure 1. Workers
are heterogeneous in general human capital h which takes values in the discrete set H :=

{h1, h2, . . . , hH} where h1 < h2 < · · · < hH and H ∈ N. Workers are either non-employed
or employed at a firm.17 At rate µ ∈ (0, 1), workers exogenously leave the labor force.18

For each worker that exits, a new worker is born into non-employment at the bottom of
the human capital ladder, i.e. with h = h1. This birth-death process ensures the measure
of workers in the economy remains constant and also dampens human capital accumulation
which I describe below. There are two types of firms:

1. a finite number M ∈ N of homogeneous peripheral firms with common productivity
pP normalized to 1, and

2. a dominant firm with productivity pD ≥ 1.

A key model ingredient is that the dominant firm is non-atomistic, i.e. it internalizes the
effect its choices have on the aggregate (market-wide) state. The set of peripheral firms is
denoted P := {y1, y2, . . . , yM}. I assume the peripheral firms behave as if they are atomistic:
although there are finitely many of them, they do not internalize their effect on the aggre-
gate distribution. This behavioral assumption is both motivated by the empirical evidence
presented in Section 1 as well as tractability concerns which I discuss in Section 2.9. Note
this is not as restrictive as assuming the peripheral firms behave competitively as they will
still offer workers a wage below their marginal product. However, this wage (and markdown)
is static and does not take into account any of the dynamics arising from the human capital
accumulation of workers. I discuss this assumption more in Section 2.5 and Section 2.6 when
I present the firm values.

Preferences. Both workers and firms are risk neutral and discount the future with common
discount factor β ∈ (0, 1). Firms compete for workers by posting wages for every human
capital level to maximize the present discounted value of profits. I denote these choices
wi := (w1

i , . . . , w
H
i ) where i ∈ {D,P} for dominant and peripheral indexes the firm type.

At each period t, a worker observes their state and chooses a destination dt ∈ {D, y1, . . . , yM , N},
where N is non-employment, to maximize the sum of present and expected future utilities.

17 To be consistent with the data, I do not distinguish between non-employment and unemployment.
18 This can be thought of as death or (exogenous) retirement.
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As is standard in Markov decision models, the worker’s optimal decision rule is the same in
two different periods if the worker’s states are equal. I therefore omit time subscripts going
forward. In addition to their human capital h, workers are also heterogeneous in their time-
varying preferences for firms and non-employment, denoted by ϵ := (ϵD, ϵy1 , ϵy2 , . . . , ϵyM , ϵU).
These idiosyncratic preferences reflect non-wage amenities, working conditions, and com-
muting costs, amongst many other things, and are unobservable to the researcher. I assume
that ϵ are drawn i.i.d from a Type 1 Extreme Value distribution every period. For every
alternative d ∈ {D, y1, . . . , yM , N}, the CDF of ϵd is

G(ϵd) = exp(− exp(ϵd/σ)),

where I normalize the location to 0 and σ > 0 is the scale parameter.19 In addition to
the taste shocks, workers derive utility from non-wage amenities at both types of firms. I
normalize the amenities at the peripheral firms to 0 and denote by aD := (a1D, a

2
D, . . . , a

2
D)

the vector of amenity values workers receive at the dominant firm. Finally, workers are
subject to two moving costs: ϕEE > 0 when they switch firms and ϕNE > 0 when they move
from non-employment to employment.20 I assume utility is linear, time separable, and that
the unobservable component ϵd enters additively into worker utility.

Technology. Firms produce a homogeneous final good with a price normalized to 1. The
output produced by a firm with productivity pi ∈ {pD, 1} and endogenous workforce mi :=

(m1
i ,m

2
i , . . . ,m

H
i ) is

Fi(mi) := pi
∑
h∈H

mh
i × h (2)

mh
i is the number of workers with human capital h hired by firm type i. A non-employed

worker of type h produces bh, which can be thought of as home production.

Human Capital. A worker’s human capital evolves according to their employment status.
An employed worker with human capital h moves up one step in the human capital ladder
with probability ghE:

h′ =

h = hk w/ prob. 1− ghE

min{hk+1, hH} w/ prob. ghE.
(3)

19 The scale parameter governs the variance of the shocks π2σ2/6.
20 If there were no cost to moving from N to E, then workers could go to non-employment for one period

before going to employment to avoid the switching cost ϕEE .
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Notice that there is no firm-specific learning rate: ghE is not indexed by the firm type i ∈
{D,P}. I follow Ljungqvist and Sargent (1998) and assume that human capital declines
in non-employment. A non-employed worker can either move down one rung of the human
capital ladder with probability ghN or stay at their current human capital level:

h′ =

max{h1, hk−1} w/ prob. ghN

h = hk w/ prob. 1− ghN .
(4)

In the value functions below, I will use Eh′|h,d to denote the human capital dynamics of a
worker with current human capital h at destination d.

2.2 Timing and Labor Market Flows

t t+ 1

Human capital
changes with

probabilities ghE , g
h
N

Birth-death process µ

Firm value
Wage choice

Planner’s problem

Worker value

Choice-specific values
Production: FD, FP , b

h

Taste shocks ϵ realized

Note: The timing of the value functions is in orange.

Figure 4: Within period timing of the model

Figure 4 above summarizes the timing assumptions in the model. I omit time subscripts
for ease of exposition. At the beginning of the period, the measures of workers with hu-
man capital h at the dominant firm, at the peripheral firm y, and in non-employment are
mh

D,−1,m
h,y
P,−1, and mh

N,−1, respectively. The −1 subscript indicates that this distribution
is inherited from the previous period. First, worker human capital evolves according to
Equations (3) and (4). The resulting measures of workers with human capital h are given
by

êhD = mh
D,−1(1− ghE) +mh−1

D,−1g
h−1
E 1{h>h1}, (5)

êh,yP = mh
P,−1(1− ghE) +mh−1

P,−1g
h−1
E 1{h>h1}, ∀y ∈ P (6)

n̂h = mh
N,−1(1− ghN) +mh+1

N,−1g
h+1
N 1{h<hH} (7)

where 1 is the indicator function. Note ghH
E = 0 and gh1

N = 0.
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Next, the birth-death process removes µ workers from the economy and µ workers are
born into non-employment with h = h1. The measures of employed workers at the dominant
and peripheral firms after this occurs, for every h ∈ H, are ehD = (1 − µ)êhD and eh,yP =

(1 − µ)êh,yP , ∀y ∈ P . Similarly, the measure of non-employed workers with h > h1 is
nh = (1 − µ)n̂h. A fraction µ of the non-employed with h = h1 exit, but are immediately
replaced. Moreover, there is an additional inflow corresponding to the exit of all other worker
types in the economy. Hence the measure of non-employed workers with h = h1 is

n1 = (1− µ)n̂1 + µ
∑
h

n̂h + µ
∑
h

∑
y

êh,yP + µ
∑
h

êhD. (8)

The firms then choose wages to maximize the present discounted value of profits. I denote
the aggregate distribution of workers across firms and non-employment at the time of their
choice as

(ey1P , . . . , eyMP , eD, n) ⊂ ∆(M+2)×H

where eyP := (e1,yP , e2,yP , . . . , eH,y
P ), ∀y ∈ P is the workforce of peripheral firm y, eD :=

(e1D, e
2
D, . . . , e

H
D) is the workforce of the dominant firm, and n := (n1, n2, . . . , nH) is the

distribution of non-employed workers. The firms’ states are slices of this aggregate dis-
tribution, which I define in Section 2.3. Workers then decide which firm to work for or
non-employment, taking expectations over the unrealized taste shocks ϵ. This mobility is
characterized by conditional choice probabilities, which yield the distribution at the end of
the period mD,m

y
P , and mN . I report this law of motion when I formalize the firm problems

in Section 2.5. Finally, after matches have been consummated, production occurs both at
home and on the job. Then the next period begins. I now turn to defining agents’ states in
the model.

2.3 State Space

Firm States. In addition to its own workforce eD and the distribution of non-employed
workers u, the dominant firm only needs to keep track of the distribution of workers across
all peripheral firms, and not the specific split into each of the M peripheral firms. This is
because peripheral firms are assumed homogeneous and atomistic.21 I denote this as

s := (s1, s2, . . . , sH)

21 Another reason the split into the M peripheral firms isn’t a part of the dominant firm’s state is that the
switching cost is the same regardless of worker origin. If the switching cost was indexed by the firm, e.g.
ϕEE
y ̸= ϕEE

y′ for two different peripheral firms y, y′ ∈ P, then the dominant firm would need to know which
peripheral firm it is poaching from.
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where sh :=
∑

y∈P eh,yP is total employment of workers with human capital h at the peripheral
firms. Hence, the dominant firm’s state is χ := (eD, u, s) ⊂ ∆3H .

Worker States. The state of a worker is their human capital level h ∈ H, their unobserved
vector of preferences ϵ for each potential destination d ∈ {D, y1, . . . , yM , N}, their origin
o ∈ {D,P,N}, and χ.

2.4 Worker Value and Mobility

Worker Value. Infinitesimal relative to the economy, workers take the aggregate laws
of motion as given. A worker with state (h, ϵ, o, χ) observes the wages offered to them
by the dominant and peripheral firms and decides where to work. The worker’s dynamic
programming problem is characterized by the standard integrated value function22

V (h, o, χ) =

∫
max

d

[
u(h, o, χ, d) + ϵd + β(1− µ)Eh′|h,dV (h′, d, χ′)

]
g(dϵ|h, o, χ) (9)

where u(h, o, χ, d) is the contemporaneous utility received if alternative d is chosen and g(·)
is the probability density function of the Type 1 Extreme Value distribution.23 For employed
workers, contemporaneous utility is the sum of earnings and the amenity value of working
minus the relevant switching costs:

u(h, o, χ,D) = wh
D(χ) + ahD − ϕNE

1{o = N} − ϕEE
1{o = P},

u(h, o, χ, P ) = wh
P (χ) − ϕNE

1{o = N} − ϕEE
1{o = D,P ′},

where P ′ ̸= P is a different peripheral firm. A non-employed worker only derives utility
from their home production, u(h, o, χ,N) = bh, ∀o. Note that since peripheral firms are
homogeneous and atomistic, in equilibrium they will post the same wages. However, the
switching cost ϕEE is incurred when moving between two different peripheral firms P ̸= P ′.
So for workers with o = P , the set of possible destinations is d ∈ {D,P, P ′, N}. Workers with
o ∈ {D,P} do not differentiate between P and P ′ and so choose from d ∈ {D,P,N}. Under
the assumption that ϵ is Type 1 Extreme Value, the ex-ante value to a worker employed at
the dominant firm has the following closed-form expression

V (h,D, χ) = σ

(
ln

(
exp

v(h,D, χ,D)

σ
+M exp

v(h,D, χ, P )

σ
+ exp

v(h,D, χ,N)

σ

)
+ γEM

)
22 See Aguirregabiria and Mira (2010) for a clear survey of dynamic discrete choice models and standard

results.
23 With location normalized to 0 and scale parameter σ > 0, the pdf is g(ϵd) = exp(−ϵd/σ−exp(−ϵd/σ))/σ.
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where γEM ≈ 0.5772 is the Euler-Mascheroni constant and

v(h, o, χ, d) = u(h, o, χ, d) + β(1− µ)Eh′|h,dVσ(h
′, d, χ′)

are the choice-specific value functions. The expressions for the value to workers at the
peripheral firms and in non-employment are relegated to Appendix B.2.

Conditional Choice Probabilities. The conditional choice probability P (d|h, o, χ) is the
probability that a worker with states (h, o, χ) optimally chooses destination d. To simplify
notation, I write P h

o→d = P (d|h, o, χ). The set of 10×H24 choice probabilities are given by

P (d|h, o, χ) =
∫
1{d = argmax

j∈{D,P,N}
v(h, o, χ, j) + ϵ(j)}g(dϵ|h, o, χ), o ∈ {D,N},

P (d|h, P, χ) =
∫
1{d = argmax

j∈{D,P,P ′,N}
v(h, o, χ, j) + ϵ(j)}g(dϵ|h, o, χ)

where 1 is the indicator function. The Type 1 Extreme Value assumption also gives rise to
closed-form expressions for these probabilities which I report for o = P . A worker employed
at a peripheral firm P can either remain at P , move to the dominant firm, move to another
peripheral firm P ′ ̸= P , or choose non-employment. Therefore, the probability of staying at
the same peripheral firm is

P h
P→P =

ev(h,P,χ,P )/σ

ev(h,P,χ,P )/σ + ev(h,P,χ,D)−ϕEE/σ + (M − 1)ev(h,P,χ,P ′)−ϕEE/σ + ev(h,P,χ,N)/σ

I relegate the remaining probabilities, including the ones for workers starting from the dom-
inant firm and non-employment, to Appendix B.3. Again, due to the homogeneity of the
peripheral firms, we have

v(h, P, χ, P ′) = v(h, P, χ, P )− ϕEE. (10)

2.5 Labor Supply Curves and Firm Value

Both types of firms i ∈ {D,P} choose wages wi = (w1
i , . . . , w

H
i ) every period to maximize the

present discounted value of profits. The key feature of the dominant firm’s problem is that
24 For each h ∈ H, there are ten conditional choice probabilities:

Ph
D→D, Ph

D→P , P
h
D→N , Ph

P→D, Ph
P→P , P

h
P→P ′ , Ph

P→N , Ph
N→D, Ph

N→P , P
h
N→N
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it is non-atomistic. It is big enough to internalize both the effect on its labor supply curve
today through the choice probabilities and the effect on its future state χ′. These two effects
are intertwined and introduce a fixed point problem inside of the firm’s problem: to forecast
χ′, the dominant firm needs to know the choice probabilities but to compute the choice
probabilities, the dominant firm needs to know χ′. This subtlety arises precisely because
the dominant firm is non-atomistic, a key ingredient of the model that uniquely separates
it from the rest of the literature. I discuss this fixed point in more detail in Appendix C.1
and how the solution method I use allows me to avoid explicitly solving for the fixed point
in Section 2.9.

The assumption that the peripheral firms behave as if they are atomistic implies that they
do not internalize the effect their choice of wages has on their labor supply curve. However,
importantly, this does not imply that they offer workers their marginal product of labor.
Just like the dominant firm, the peripheral firms also have monopsony power due to taste
shocks, switching costs, and market granularity. Even without internalizing the dynamic
effects on the aggregate distribution, this still enables them to price below workers’ marginal
product of labor. The key difference with the dominant firm is that the wage they offer is
a markdown of the static marginal product of labor, which I discuss more in Section 2.6.
Therefore, the dominant firm is a dynamic monopsonist and the peripheral firms are static
monopsonists.

Labor Supply Curves. I denote by mi := (m1
i , . . . ,m

H
i ) the labor supply curve faced by

firm i ∈ {D,P} where mh
i is the mass of workers with human capital h that decide to come

to firm i. The labor supply curve firms face depends on their choice of wages. An important
measure of i’s market power is thus its labor supply elasticity,

εhi (χ,wi) :=
∂mh

i (χ,wi)

∂wh
i

wh
i

mh
i (χ,wi)

, (11)

which captures how much employment of workers with human capital h at firm i changes
following a change in wages offered.

For the dominant firm, the labor supply curve for each worker type h is

mh
D(χ,wD) = ehDP

h
D→D(χ,wD)︸ ︷︷ ︸
retained

+ shP h
P→D(χ,wD)︸ ︷︷ ︸

poached from P

+nhP h
N→D(χ,wD)︸ ︷︷ ︸

hired from N

, (12)

where the first term corresponds to retained workers, the second term to workers poached
from rival peripheral firms, and the last term to workers hired from non-employment. The
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labor supply curves of the peripheral firms are similar,

mh
P (χ,wP ) = ehDP

h
D→P (χ,wP )︸ ︷︷ ︸

poached from D

+nhP h
N→P (χ,wP )︸ ︷︷ ︸

hired from N

+ eh,yP P h
P→P (χ, eP , wP )︸ ︷︷ ︸

retained

+ sh,yP P h
P ′→P (χ,wP )︸ ︷︷ ︸

poached from P ′ ̸= P

,
(13)

with the main difference being an additional term that captures hiring from other peripheral
firms. Notice only the retained workers do not pay the switching cost ϕEE. Hence, an
inefficiency is introduced by imposing firms offer the same wages to workers regardless of
origin. I discuss this more when I characterize the centralized equilibrium in Section 3.

Another implication of the dominant firm being non-atomistic is it not only internalizes
the effect on its own labor supply curve but also on the labor supply curves of its rivals
and the distribution of workers who choose non-employment. I define mN := (m1

N , . . . ,m
H
N)

where the mass of workers with human capital h who choose non-employment is

mh
N = ehDP

h
D→N︸ ︷︷ ︸

inflow from D

+ shP h
P→N︸ ︷︷ ︸

inflow from P

+ nhP h
N→N︸ ︷︷ ︸

remaining at N

. (14)

After matches are formed, human capital changes and these labor supply curves become χ′

according to the laws of motion presented in Section 2.2.

Firm Problem. We are now ready to formalize the dominant firm’s problem. The domi-
nant firm’s value, JD(χ), solves the following Belllman equation

JD(χ) = max
wD∈RH

+

FD(mD(χ,wD))−
∑
h

mh
D(χ,wD)× wh

D + βEJD(χ
′) (15)

subject to the labor supply curves given by Equations (12) to (14) and the law of motion for
χ′(χ,wD) given by Equations (5) to (8). The first two terms are contemporaneous revenue:
output less the wage bill. The last term is the continuation value where the expectation
is taken over the human capital accumulation of all the workers in the market. I relegate
the first-order conditions, which I do not explicitly use to solve the model, to Appendix B.4
and a more formal discussion of the mechanics of the dominant firm being non-atomistic to
Appendix B.5.

The main tradeoff in the firm’s problem is between present and future profits. On the one
hand, there is an incentive for the dominant firm to exploit its monopsony power and choose
low wages, thus increasing today’s profits. On the other hand, lowering wages affects the
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sorting of workers and their subsequent human capital accumulation. Some workers will opt
to go to the peripheral firms, while others will choose non-employment. Both will be more
expensive to re-hire in the future because of the switching costs and in addition, the workers
going to non-employment will see their human capital depreciate. Hence, by lowering wages
today, the dominant firm hinders future profits.

The extent to which they exploit this market power depends on how much market power
they have to begin with, as well as the learning environment in the market. I study these
tradeoffs more formally and quantify their implications in Section 5.

2.6 Dynamic Markdowns

The wage equation for the dominant firm, derived in Appendix B.4, is

wh
D =

εhD(χ,wD)

εhD(χ,wD) + 1︸ ︷︷ ︸
markdown

[
∂FD(χ,wD)

∂mh
D(χ,wD)︸ ︷︷ ︸

static term

+ βE
∂JD(χ

′)

∂mh
D(χ,wD)︸ ︷︷ ︸

dynamic term

]
. (16)

The gap between the wage and the marginal product of labor is the wage markdown, which I
denote ηhD for the dominant firm, and is equal to the Lerner index (Lerner 1934) of the firm’s
labor supply elasticity. The marginal product of labor is the sum of a static component and
a dynamic component. The static term captures how much output at the dominant firm
today changes as it hires an additional worker with human capital h. The dynamic term
captures the impact on the firm’s value tomorrow of hiring a worker today: this additional
worker will be both more skilled and less costly to hire.

Equation (16) nests the standard static wage markdown equation. The most straightfor-
ward way to recover a static markdown is if there are no dynamics and the firm maximizes
period profits (i.e. β = 0). Moreover, if the firm is atomistic and does not internalize the
effect its choice of wages has on its future state, then the dynamic term also disappears. It is
not only the fact that the firm is foward-looking that matters, but also that it is big enough
to internalize its effect on the aggregate state. The wage equation for the peripheral firms,
which I assume behave as if they were atomistic, is therefore

wh
P =

εhP (χ,wP )

εhP (χ,wP ) + 1︸ ︷︷ ︸
markdown

∂FP (χ,wP )

∂mh
P (χ,wP )

, (17)
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where I show in Corollary 1 that the static markdown,

ηhP :=
εhP (χ,wP )

εhP (χ,wP ) + 1
,

is equal to the gap between wages in the centralized and decentralized equilibria. I discuss in
Section 4.2 how I estimate εhP (χ,wP ) internally which I then use to solve for the equilibrium
of the model. Notice that the model admits a distribution of markdowns across firms, i.e.
between the dominant and peripheral firms, as well as within firms, i.e. for different human
capital levels.

There are many ways in which the static markdown equation can be extended to allow for
dynamics and in fact, this paper is not the first to do so. Wong (2023) extends the seminal
work of Manning (2006) to allow for imperfect competition in the goods market as well as a
richer production technology and also obtains a dynamic markdown equation that features
the marginal profit associated with the hiring of an additional worker.

In static models, the markdown is a sufficient statistic for the welfare losses due to
monopsony power because the efficient outcome is to offer workers their marginal product.
However, as pointed out by Manning (2003), it is not clear if the markdown remains the
relevant measure in more general settings, which is why why in Section 3 I study the cen-
tralized equilibrium of the model. In Theorem 1, I show that the static marginal product
of labor decentralizes the efficient allocation. Therefore, the dynamic markdown (and the
Lerner index) in Equation (16) is not a sufficient statistic for the welfare losses.

2.7 Equilibrium Concept

I study stationary competitive equilibria of the model. The stationarity restriction requires
that firm policies are not indexed by time t. Stationarity does not change the fact that the
strategic environment firms compete in is inherently time-varying through the dynamics. It
merely restricts next period’s aggregate distribution implied by firms’ strategies to coincide
with the current distribution, i.e. χ′ = χ. In fact, as I discuss in Appendix C, I solve for the
recursive equilibrium and then impose stationarity.

Having justified the main restriction on the class of equilibria studied, we can now for-
mally define an equilibrium in this economy:

Definition 1 (Equilibrium). A stationary competitive equilibrium is a worker value
{V (h, o, χ)}, firm values {JD(χ), JP (χ)}, firm policies {wD(χ), wP (χ)} and a law of mo-
tion for χ such that
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1. The worker value satisfies Equation (9) given firm policies and the law of motion for
χ.

2. JD(χ) solves Equation (15) given worker values and the law of motion for χ.

3. wP (χ) solves Equation (17) given worker values and the law of motion for χ.

4. The law of motion for χ given by Equations (5) to (8) and (12) to (14) is consistent
with the worker value function and firm policies.

5. The aggregate distribution of workers across firms and non-employment is stationary:

χ′ = χ.

Existence and Uniqueness. Because I assume the peripheral firms are atomistic, the
strategic interaction between the dominant firm and the peripheral firms is trivial. The
peripheral firms always offer workers a constant static markdown so no best response iteration
is necessary. Nonetheless, some results from the dynamic oligopoly literature still apply here.
In dynamic pricing games with single-product firms25 where the strategy sets are convex
and compact and the profit function is quasi-concave, there exists a pure strategy Nash
equilibrium which is obtained by applying the Brouwer or Kakutani fixed point theorems
(Caplin and Nalebuff 1991). This approach does not generally extend to settings with multi-
product firms26 because it is no longer guaranteed that firm profits are quasi-concave (Hanson
and Martin 1996). This issue is present here as well: Lemma 1 in Appendix B.6 shows that
the dominant firm’s value function, Equation (15), is neither concave (sufficiency of first-
order conditions) nor quasi-concave (existence). Finally, the removal of strategic interactions
also helps bypass issues of multiplicity common in this class of models. In practice, when I
solve the model I do not run into multiple equilibria.

2.8 Discussion

I now discuss several key modeling choices and potential extensions before turning to the
planner’s problem.

25 This is equivalent to the nested case H = 1 where all workers are homogenous, effectively shutting off
human capital accumulation in the model.

26 The model with H > 1 is analogous to a dynamic oligopoly model with multi-product firms. There are
two key differences. First, here the strategic interactions are trivial since the peripheral firms are atomistic.
Second, here the supply of workers is dynamic, whereas in multi-product firm models, the demand for
products is static.
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Human Capital. The human capital accumulation process I study is stylized and can
be extended along several dimensions. First, human capital only accumulates through the
extensive margin, i.e. there is no hours decision on the worker side. I do not allow for
an intensive margin because the variance of hours in the data is small. Workers in France
are subject to the 35-hours workweek policy enacted in 1998.27 Moreover, since the data is
constructed from the DADS forms which firms fill out annually, it is reported hours and not
actual hours that are observable. Put together, these two features imply a large mass point
of weekly hours worked at 35 with little variation.

Second, I focus on general human capital. Firm-specific human capital would give firms
additional market power: with non-transferrable human capital, the firms’ workforces will
be more persistent over time. However, extending the model to allow for this would entail an
increase in the dimensionality of the worker and firm problems.28 Third, I do not allow for
firm-specific learning rates, i.e. the rate at which workers learn while employed is the same
across firms. It is straightforward to add this in the model: ghE would be split into ghD and
ghP . This would add an extra aspect of differentiation of firms from the worker’s perspective,
giving them more monopsony power.

Segmented Markets. This is a model of segmented markets. There are many ways to
extend the model to allow for mobility across markets, but perhaps the most natural would
be to use a sequential decision structure such as the nested logit. Workers would first choose
which labor market to participate in and then, conditional on the choice of market, a firm or
non-employment. However, without imposing a behavioral assumption,29 this would render
the model intractable since firms would be competing not only with the other firms in their
market but also with all the other firms across all the other markets. A more feasible setup
would be to allow firms to be non-atomistic within markets, but atomistic across markets
as in Berger, Herkenhoff, and Mongey (2022). Since I define a local labor market to be
the combination of a region and a 4-digit occupation code, extending the model to allow
for mobility across markets would entail modeling either commuting zone or occupation
switching. Both would alter the tradeoffs the firms face described in Section 2.5.

27 See Estevão et al. (2008) for a clear history of hours reductions in France since the 1980s.
28 Suppose workers are also heterogeneous in firm-specific human capital that takes values in a discrete

grid of size F . Then the aggregate state would now be the joint distribution of workers across both types of
human capital, firms, and non-employment. Assuming the same market structure, this would have cardinality
3×H × F .

29 For example, one could impose that firms do not internalize the effect their choices have on the sorting
of workers in other markets.
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Market Power. The extent of monopsony power firms have is governed by several param-
eters. First, firms derive market power from the granularity of the market, captured by the
number of firms M + 1. All else equal, increasing M makes the market more competitive.
Second, preference heterogeneity induced by the logit taste shocks creates classic differen-
tiation between the firms and non-employment. These reflect non-wage amenities such as
working conditions or commuting costs that are specific to the firm. Since I normalize the
location of the shocks to 0, the scale σ determines the strength of this effect. Third, the rel-
ative amenity value of being employed at the dominant firm aD := (a1D, a

2
D, . . . , a

H
D) creates

classic differentiation between both firm types. These reflect differences in preferences for
the dominant firm and any of the peripheral firms. Finally, the moving costs ϕEE and ϕNE

also differentiate firms from the point of view of the worker and give the incumbent firm
monopsony power.

A popular alternative approach to modeling monopsony power is with search frictions.
The most influential example is Burdett and Mortensen (1998), on which recent several
recent papers build (Engbom and Moser 2022, Gouin-Bonenfant 2022, Berger, Herkenhoff,
Kostøl, and Mongey 2023, and Gottfries and Jarosch 2023). In any search and matching
model of the labor market, firms reap the benefits of an upward-sloping labor supply curve
because of costly reallocation from the search frictions. The switching costs are isomorphic
to search frictions but are not endogenous.

Market Structure. The market configuration in this paper, one dominant firm and a finite
number of peripheral firms (fringe), is common in dynamic oligopoly models (e.g. Benkard
et al. 2015) and is chosen to mimic the features of the data described in Section 1.3. The
main restriction in terms of market structure is that the peripheral firms are homogeneous
which implies they have equal employment in equilibrium. Nonetheless, the model nests a
diverse range of market structures. For example, the model reduces to perfect competition
if pD = 1, ϕEE = ϕNE = 0,M → ∞ and ahD for all h. Fixing pD, increasing the number of
peripheral firms M will yield less and less concentrated markets.

2.9 Solution Method

The aggregate state, shared by both workers and firms in the model, is the distribution
of workers across firm types and human capital levels and has cardinality 3 ×H. Even for
relatively small H, the curse of dimensionality (Bellman 1957) kicks in quickly. Suppose H =

3 and we solve the model on a very coarse grid with the 11 points {0, 0.1, 0.2, . . . , 1}. Since
χ ⊂ ∆3H , we would not have to solve the model for each of the 119 ≈ 2.3 billion combinations,
but “only” for combinations that sum to 1. A simple application of the stars and bars theorem
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in combinatorics shows that there are still tens of thousands of combinations to consider,
making this intractable. So even solving the model on a very coarse grid for a small number
of human capital levels is not possible. 30

Hence, I solve for an equilibrium by approximating the key model objects: the firm
policies and values, the worker value, and the laws of motion. Polynomials (e.g. Chebyshev
or Hermite), the conventional class of approximating functions, are not well-suited to this
setting. They cannot perform the dimension reduction necessary to handle such a large
state space, e.g. updating the coefficients on the series approximating the firm policies
would require directly solving for the optimal policies a prohibitively large number of times.
They are also known to have explosive behavior when extrapolating outside the bounds of
the fitted area and have difficulty fitting local features.

To bypass these issues, I use deep neural networks. I relegate a summary of neural net-
works to Appendix C.2, but discuss several of their properties here. First, the universal
approximation theorem (Hornik et al. 1989) states that neural networks with at least one
hidden layer can get arbitrarily close to any continuous function. Remarkably, neural net-
works can approximate highly nonlinear applications such as binding constraints, kinks and
ridges, non-differentiabilities, discontinuities, and discrete choices. Second, neural networks
circumvent the curse of dimensionality. Barron (1993) shows that the number of neurons
required to approximate a function scales linearly with the number of dimensions of the in-
put. In contrast, this grows exponentially for series approximations. Third, recent advances
in computing have led to the development of state-of-the-art machine learning libraries (e.g.
Google’s TensorFlow), which allow neural networks to be estimated very quickly.

More precisely, I use deep reinforcement learning, which refers to the use of reinforcement
learning algorithms with deep neural networks. I relegate an overview of deep reinforcement
learning and a detailed description of the solution method to Appendix C.4, but provide
here a high-level discussion of its main benefit: solving for the firm’s optimal choice of wages
without resorting to any direct optimization. In prediction problems, the parameters of a
neural network are commonly updated to minimize the loss from inaccurate predictions.31

Using such a loss function for the firm problem entails finding the optimal policy for each of
the training points at each iteration. If done with an optimizer,32 this requires an overwhelm-
ing amount of evaluations of the firm profits. To avoid this, I modify the deep deterministic

30 Interpolation in high dimension can also be problematic, both in terms of accuracy and in terms of
speed.

31 The most common loss function is the mean squared error (MSE) 1
Nt

∑
i(ŷi−yi)2 where ŷi is the predicted

value, yi is the truth, and Nt is the number of points in the training data.
32 As discussed in Section 2.7 and shown in Appendix B.6, the dominant firm’s value is neither concave

nor quasi-concave. Therefore sufficiency of the first-order conditions is not guaranteed. For this reason, I do
not use the firm’s first-order conditions to characterize its optimal choice of wages.

30



policy gradient (DDPG) method proposed by Silver et al. (2014) and Lillicrap et al. (2015).
This is an actor-critic algorithm, a popular method in deep reinforcement learning in which
both the policy (actor) and the value (critic) are approximated by neural networks. The
neural network weights for the value are updated by minimizing the Bellman residuals. For
the policy, the neural network weights are updated by minimizing the negative value function
(equivalent to maximizing the value).33

3 The Centralized Equilibrium

Does allowing for human capital accumulation exacerbate or mitigate the inefficiencies from
firms having monopsony power? To better understand the welfare costs of monopsony in the
presence of dynamic human capital accumulation, in this section I describe the centralized
equilibrium of the model. I first define the planner’s problem and discuss model inefficiencies
then characterize the wages that decentralize the efficient allocation. In Section 5, I use the
estimated model to quantify the welfare losses.

3.1 The Planner’s Problem

Consider a social planner that chooses the allocation of workers across firms to maximize
market-wide welfare. Consistent with the decentralized equilibrium, I assume the planner’s
problem occurs at the same time as firms choose wages, i.e. after human capital changes
and before workers receive their taste shocks (see Figure 4 for model timing). Because of
the switching costs, the aggregate distribution of human capital is not sufficient and the
planner needs to know the distribution of workers across the dominant firm, the peripheral
firms, and non-employment. His state is thus also χ = (eD, u, s) ⊂ ∆3×H . The planner
simultaneously chooses the allocation of all worker types to a destination d. In the model,
workers go where they receive the most utility. Here, the planner chooses a value to offer
each worker type (h, o, ϵ) so as to affect their mobility choice. Notice that since the utility
value workers receive from their idiosyncratic taste shock ϵ affects their choice of destination,
the planner’s choice of value is indexed by ϵ. As in Lagakos et al. (2023) and Waugh (2023),
this is equivalent to the planner directly choosing the 10×H probabilities

{P h
D→d}d∈{D,P,N}, {P h

P→d}d∈{D,P,P ′,N}, {P h
N→d}d∈{D,P,N}, ∀h ∈ H,

33 The lifetime reward approach of Maliar et al. (2021) also updates the neural network for the policy using
the negative value as the loss, but instead of approximating the value, they use simulation. Given predicted
policies, they simulate forward to obtain a finite-horizon (truncated) approximation of the value function.
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which I collapse into P ⊂ [0, 1]10×H . Note these are probabilities so there are the same three
associated constraints that ensure they sum to 1 as in the decentralized equilibrium.

The planner’s choice of P determines worker mobility within the period. The number of
workers with human capital h the planner sends to the dominant firm is

mh
D,S(P) := ehDP

h
D→D + shP h

P→D + nhP h
N→D. (18)

Similarly, the number of workers with human capital h who get placed in non-employment
is

mh
N,S(P) := ehDP

h
D→N + shP h

P→N + nhP h
N→N . (19)

Next, the inflow of workers at any of the M peripheral firms includes workers coming from the
dominant firm and non-employment, workers remaining at the peripheral firm, and workers
coming from the other M − 1 peripheral firms is

mh
P,S(P) := ehDP

h
D→P +

sh

M
P h
P→P +

M − 1

M
shP h

P ′→P + nhP h
N→P . (20)

Since the planner allocates all workers somewhere, we have the adding-up constraint
∑

h m
h
D,S(P)+

mh
N,S(P) +Mmh

P,S(P) = 1. Finally, because of the switching costs, it is also convenient to
define the number of workers with human capital h who make a transition from one firm to
another,

mh
EE,S(P) := ehDP

h
D→P + shP h

P→D + sh(M − 1)P h
P→P ′ , (21)

as well as the number of workers who transition out of non-employment,

mh
NE,S(P) := nhP h

N→D + nhP h
N→P . (22)

To simplify notation, as before, I collapse these into the H-dimensional vectors mD,S,mN,S,mP,S,
mEE,S, and mNE,S.

The utility workers derive from the taste shocks is determined by the planner’s choice.
Hence, a key component of the planner’s objective is the ex-ante (expected) value of the
taste shock for all workers. The Type 1 Extreme Value assumption yields a closed-form
expression for this object, commonly referred to as the conditional choice expected utility
(see Aguirregabiria 2021 section 11.2 for a derivation). Given a transition probability P h

o→d
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chosen by the planner, the expected value of the worker’s preference shock is given by

E[ϵ|P h
o→d] = σγEM − σ lnP h

o→d (23)

where, again, γEM is the Euler-Mascheroni constant. Aggregating over all workers, the total
ex-ante value of these shocks given the planner’s choice of P is

E(P) :=
∑
h

ehD

(
P h
D→DE[ϵ|P h

D→D] +MP h
D→PE[ϵ|P h

D→P ] + P h
D→NE[ϵ|P h

D→N ]

)
+
∑
h

sh
(
P h
P→DE[ϵ|P h

P→D] + P h
P→PE[ϵ|P h

P→P ] + (M − 1)P h
P→P ′E[ϵ|P h

P→P ′ ] + P h
P→NE[ϵ|P h

P→N ]

)
+
∑
h

nh

(
P h
N→DE[ϵ|P h

N→D] +MP h
N→PE[ϵ|P h

N→P ] + P h
N→NE[ϵ|P h

N→N ]

)
.

The first term is the total value of the shocks for workers that begin the period employed at
the dominant firm. There are ehD of these workers with human capital h. Of those, a fraction
P h
D→D will remain at the dominant firm, a fraction MP h

D→P will move to a peripheral firm,
and a fraction P h

D→N will move to non-employment. Within each of these groups, workers
will receive different vectors of taste shocks, but their expected taste shock will be the same
and given by Equation (23). The second term and last term are analogous expressions for
workers starting the period employed at peripheral firms and non-employed, respectively.

We are now ready to formally define the planner’s problem. The planner’s value, S(χ),
solves the following Bellman equation:

S(χ) = max
P∈[0,1]10×H

F (mD,S(P)) +MF (mP,S(P)) +
∑
h

mh
N,S(P)b(h) + E(P)

+
∑
h

mh
D,S(P)a

h
D − ϕEE

∑
h

mh
EE,S(P)− ϕNE

∑
h

mh
NE,S(P) + βES(χ′)

(24)

subject to Equations (18) to (22), the law of motion for χ′ given by Equations (5) to (8), and
the three adding up constraints for P. The first three terms of the planner’s objective are
market-wide output, the fourth is the total value of the taste shocks, the sixth is the total
amenity values, and the last two are the moving costs paid by movers. Like the dominant
firm’s problem, the planner’s problem is dynamic.
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3.2 Inefficiencies

There are two inefficiencies. First, there is an allocative efficiency stemming from the restric-
tion that firms cannot price discriminate according to a worker’s origin. The wage offered
to a worker with human capital h is the same whether the worker is retained, poached from
a rival firm, or hired from non-employment even though these workers are subject to dif-
ferent switching costs. Therefore, firms in the model do not fully internalize the benefits
to the workers of employment at other firms. Second, as in Mongey and Waugh (2023), an
additional inefficiency arises because markets are incomplete: workers cannot insure against
their idiosyncratic taste shocks. I focus solely on allocative efficiency and will have nothing
to say about the second inefficiency. In this regard, the planner is constrained: they can
control the allocations of workers across the various firms and non-employment, but can not
provide the missing market of insurance

3.3 Decentralization

I now characterize the dominant wages that decentralize the efficient allocation of workers
to firms and non-employment, which I denote wh

D,S and wh
P,S.

Theorem 1 (Decentralization). The static marginal product of labor decentralizes the effi-
cient allocation, both for the dominant firm,

wh
D,S = pD × h, (25)

and for the peripheral firms,
wh

P,S = h. (26)

Proof. First, since production, given by Equation (2), is constant returns to scale, the plan-
ner’s problem is separable. The elasticity of substitution between different worker types is 1,
therefore there are no spillovers in production between different workers. Instead of jointly
choosing the allocation of workers, the planner can choose where to allocate each worker
type (h, ϵ, χ) where ϵ = {ϵD, ϵy1 , ϵy1 , . . . , ϵyM , ϵN}. Equation (24) can thus be expressed as
the distribution weighted sum of worker-level values,

S(χ) =
∑
h∈H

∑
o∈{D,P,N}

m(h, o, χ)S(h, o, χ), (27)

where the weight m(h, o, χ) is the number of workers of type (h, o) with aggregate state χ.
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As with the worker value Equation (9), S(h, o, χ) is the integrated value to the planner:

S(h, o, χ) =

∫
max

d

[
uS(h, o, χ, d) + ϵd + β(1− µ)Eh′|h,dS(h

′, d, χ′)

]
g(dϵ|h, o, χ). (28)

uS(h, o, χ, d) is the contemporaneous welfare (excluding the realization of the taste shock ϵd)
resulting from a worker of human capital h with origin o going to a destination d:

uS(h, o, χ,D) =
∂FD

∂mh
D

+ ahD − ϕNE
1{o = N} − ϕEE

1{o = P},

uS(h, o, χ, P ) =
∂FP

∂mh
P

− ϕNE
1{o = N} − ϕEE

1{o = D,P ′},

uS(h, o, χ,N) = bh.

∂Fi

∂mh
i

is the static marginal product of labor, e.g. ∂FD/∂m
h
D is how much the output of the

dominant firm changes when it has one more worker with human capital h. With linear
production, the marginal products are ∂FD

∂mh
D

= pD × h and ∂FP

∂mh
P
= h since pP is normalized

to 1. Comparing Equation (28) with Equation (9), it is clear that setting the wages equal
to the static marginal product decentralizes the efficient allocation:

wh
D,S =

∂FD

∂mh
D

=⇒ wh
D,S = pD × h

wh
P,S =

∂FP

∂mh
P

=⇒ wh
P,S = h

This concludes the proof.

This result is reminiscent of the seminal work of Becker (1962). With constant returns
to scale production, the destination choice of any one worker does not impact either pay or
productivity of any other worker in the economy. In other words, the worker’s choice does
not have any spillovers to other workers. So if workers receive the full value of the output
they produce while employed, then they internalize the full set of costs and benefits of their
decisions. Hence offering them their static marginal product of labor results in the efficient
allocation. Perhaps surprisingly, there is no dynamic component. The reason for this is two-
fold. One contributing factor is that the worker is forward-looking and already internalizes
the present discounted value of wages they can make in the future. Additionally, the worker
is atomistic so does not internalize how their choice can affect the aggregate distribution.

Next, I define νh
i for i ∈ {D,P} and h ∈ H to be the ratio between the wages that

decentralize the planner’s problem and the wages offered in the decentralized equilibrium.
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Corollary 1. νh
P is equal to the wage markdown ηhP :

νh
P := wh

P/w
h
P,S = wh

P/h.

Corollary 1 follows immediately from Theorem 1 and is the standard result found in
static models of monopsony: the markdown ηhP = εhP (χ,wP )/(ε

h
P (χ,wP ) + 1) is a sufficient

statistic to quantify the welfare losses due to monopsony. In Section 4.2, I describe how I
estimate εhP (χ,wP ) internally which I then use to compute ηhP and solve the model.

Corollary 2. νh
D is not equal to the wage markdown ηhD:

νh
D := wh

D/w
h
D,S = wh

D/(pD × h).

Corollary 2 also follows immediately from Theorem 1. There are several takeaways.
First, νh

D is decreasing in the productivity gap. Note that pD = 1 does not imply that
the market is perfectly competitive. The wages the dominant firm offers wh

D are below the
worker’s marginal product even if pD = 1 because it still has monopsony power from the taste
shocks, switching costs, amenities, and granularity of the market. Moreover, although the
wages that decentralize the efficient allocation are static, νh

D is dynamic: wh
D is set according

to the wage equation given by Equation (16) which contains a dynamic term arising due
to the human capital accumulation of workers. Lastly, νh

D is not equal to the markdown
ηhD = εhD(χ,wD)/(ε

h
D(χ,wD)+1). Substituting in Equation (16) yields and expression for νh

D

in terms of the markdown and the Lerner index:

νh
D =

εhD(χ,wD)

εhD(χ,wD) + 1︸ ︷︷ ︸
:= ηhD

[
1 +

βE ∂JD(χ′)

∂mh
D(χ,wD)

pD × h

]
. (29)

If the dynamic component of the marginal product is large, either positive or negative, then
the markdown is very far from capturing the welfare losses. As mentioned in Section 2.6,
the usual static case where νh

D = ηhD can be recovered if the dynamic term is zero, which can
occur if there is no discounting, β = 0, or if the dominant firm is atomistic and does not
internalize its effect on the aggregate distribution χ′.

This gap between ν and η has important implications for the measurement of monopsony
power. In static models where η = ν, there are two approaches used to estimate the mark-
down. Researchers can either measure the elasticity of labor supply or measure the marginal
product of labor, i.e. either of the two terms in the Lerner formula above. Once we allow
for dynamics, the markdown η is no longer equal to the distance ν to the efficient outcome

36



because of the additional dynamic component. So even if we could accurately measure the
markdown η, it does not tell us anything about the welfare losses. Moreover, markdown
estimates obtained using first-order conditions of a static firm problem are misspecified and
risk biasing estimates by ignoring the dynamics.

4 Estimation

I estimate the model parameters using the DADS-Panel because the longitudinal dimension
is needed to measure human capital. I first discuss identification, then present parameter
estimates, and finally assess model fit.

4.1 Externally Set

I externally calibrate {β, µ,M,H}. The model is estimated at a yearly frequency so I set
the discount factor β to 0.95.34 The birth-death rate µ is set to 1/40 = 0.025 so that the
average worker is in the labor force for 40 years. Next, the number of firms M in a market
is observable. Finally, I choose H = 3 levels of human capital. Although this helps with
tractability, the solution method can handle much larger values of H.35 The reason I do not
allow for more human capital levels is because of the small sample size. Estimation requires
clustering worker-year observations into H different human capital levels and to be model
consistent each market must have at least one worker of each type in the dominant firm, the
peripheral firms, and non-employment. Using the DADS-Panel means losing approximately
11/12th of the observations hence I am left with some markets that do not have enough
workers per year to satisfy these clustering requirements. Increasing H would require only
considering very large markets.

4.2 Internally Estimated

There are 14 remaining parameters to estimate:

θ := {b1, b2, b3, ϕEE, ϕNE, σ, g1E, g
2
E, g

3
N , g

2
N , a

1
D, a

2
D, a

3
D, pD}.

Note that the human capital grid H does not need to be estimated since it can be inferred
from wh

P = ηhP × h conditional on knowing ηhP . I distinguish between the supply-side param-
34 This is roughly equivalent to an annual interest rate of 5% : 1/(1 + 0.05) ≈ 0.952.
35 Recent papers in economics using neural networks can handle thousands of states. For example, Maliar

et al. (2021) solve a variant of a Krusell and Smith (1998) problem with 1,000 agents which implies 2,001
state variables.
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eters,
θS := {b1, b2, b3, ϕEE, ϕNE, σ, g1E, g

2
E, g

3
N , g

2
N , a

1
D, a

2
D, a

3
D},

and the sole demand side parameter, pD. Given firm policies, θS alone determines worker
mobility. Given θS, firm behavior only depends on pD. This structure allows me to use a
two-stage procedure commonly used in the dynamic discrete choice literature to estimate
the remaining model parameters.

Supply. I first estimate θS in partial equilibrium, independent of pD. Suppose a dis-
cretization of the data is known so that we observe the contracts wdata = (wdata

D , wdata
P ), the

10 ×H = 30 conditional choice probabilities stacked into P data, and the 3 ×H = 9 dimen-
sional distribution of workers across firm types and human capital levels χdata. Then θS can
be estimated using indirect inference:

θ̂S = argmin
θS

30∑
i=1

(
P data
i − Pi(θS;w

data, χdata)

P data
i

)2

+
9∑

i=1

(
χdata
i − χ′

i(θS;w
data, χdata)

χdata
i

)2

The first term is the distance between P data and the model implied conditional choice prob-
abilities P (θS;w

data, χdata). This pins down the parameters governing mobility across the
different firms and non-employment. The second target is the law of motion for the aggre-
gate state χ′ which contains information on the human capital transitions of workers from
one period to the next. In addition, this imposes the steady state assumption: θ̂S is chosen
to minimize the distance between the distribution today χdata and χ′

i(θS;w
data, χdata), the

distribution next period implied by the model given wages wdata and χdata.36

To find the global minimum, I first sample 50 million Sobol points from the parameter
space and then use the parameter vector yielding the lowest objective value as an initial
guess for a local optimizer.37 In Appendix D.1, I plot slices of the objective function to
illustrate that the parameters are locally identified.

Peripheral Markdowns. Next, given θ̂S, I estimate the markdowns offered by the pe-
ripheral firms. Recall that the peripheral firms are static monopsonists and price according
to Equation (17), i.e. wh

P = ηhP × h where ηhP = νh
P by Corollary 1. For all human capital

levels h ∈ H, I estimate the peripheral firms’ labor supply elasticity εhP as the change in
employment at a peripheral firm following a 1% decrease in wages offered. I assume this
change is both unexpected and does not persist for more than one period. The markdown is

36 In practice, I use the distribution five periods ahead χ′′′′′ to further impose stationarity.
37 I use a combination of the Nelder-Mead (Nelder and Mead 1965) and Subplex (Rowan 1990) algorithms

to polish off the Sobol minimizer.
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then simply ηhP = εhP/(ε
h
P + 1). Since wages at the peripheral firms are observable, this pins

down the human capital grid which I use to solve for the general equilibrium of the model
in the second step of the estimation procedure.

Demand. Finally, given θ̂S and η̂P := (η̂1P , η̂
2
P , . . . , η̂

H
P ), I set the technology parameter pD

to minimize the squared distance between the model implied contracts wD(pD; θ̂S, η̂P ) and
the empirical wages wdata

D used in the first stage,

p̂D = argmin
pD

(w(pD; θ̂S, η̂P )− wdata
D )2.

The main benefit of estimating the supply parameters in the first stage is that it can be done
in partial equilibrium. Hence, the full model does not need to be solved for every vector of
parameters considered, which would not be feasible. Demand-side estimation does require
solving for the full equilibrium, but it is only a one-dimensional problem.

Heuristic Discussion. While the supply side parameters are all jointly estimated, a
heuristic discussion about which moments are most informative for each of the parame-
ters is helpful. The conditional choice probabilities (CCPs) determine mobility across the
dominant firm, the peripheral firms, and non-employment. Hence, they help pin down home
production, the switching costs, the taste shocks, and amenities. The scale of the taste
shocks σ is informed by how often workers make an EE transition which results in lower
wages. For example, in the top representative market which I define in Section 4.4, these are
moves from the dominant firm to any of the peripherals (see Table 9). Hence, P 1

D→P , P
2
D→P ,

and P 3
D→P determine the magnitude of the variance of the taste shocks. The switching cost

incurred following an EE transition is pinned down by the rate at which workers switch
employers. Consider workers employed at a peripheral firm deciding whether to stay or to
go to a rival peripheral firm. The log-odds ratio is given by

ln
P h
P→P

P h
P→P ′

=
1

σ

(
v(h, P, χ, P )− v(h, P, χ, P ′)

)
=

ϕEE

σ

where the simplification uses Equation (10). Conditional on knowing σ, this identifies ϕEE.
Next, the amenity values aD = (a1D, a

2
D, a

3
D) are identified from the rate at which workers

switch from the dominant firm to any of the peripheral firms, or vice versa. However, the
mapping is not as transparent as the one above because of the switching costs which make the
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worker continuation values origin-specific.38 As the only feature of the model differentiating
firm types, i.e. dominant versus peripheral, the amenity values are also pinned down by the
relative size of both firm types. All else equal, a big gap between the employment shares
of the dominant and peripheral firms will imply large amenity values. Finally, the cost of
moving out of non-employment ϕNE and production while non-employed b = {b1, b2, b3}
are pinned down by the rates at which workers transition in and out of non-employment.
As before, the corresponding log-odds ratio does not provide a transparent mapping to
the parameters because human capital accumulates differently for the employed and non-
employed workers.39 Finally, the second target for the supply-side parameters is the law
of motion for the aggregate distribution χ, which informs the parameters governing the
evolution of human capital {g1E, g2E, g3N , g2N}.

4.3 Discretization

Having described the estimation procedure, I now explain how I compute the moments
P data, wdata, χdata. This entails inferring non-employment and discretizing the data into H =

3 human capital levels.

Non-employment. The DADS datasets are constructed from employment spells. If a
worker is not employed, they do not appear in the data. Hence, unemployed workers receiving
benefits are not observable. This is why I do not model unemployment and instead focus on
non-employment. Nonetheless, to estimate the model, I need to both identify non-employed
workers, as opposed to workers that are out of the labor force, and infer which labor market
they are attached to. I label a worker as non-employed in a market in year t if I observe
them employed in the same market in both years t− 1 and t + 1. I then drop workers who

38 Consider for example the rate at which workers at a peripheral firm decide to stay relative to the rate
at which they go to the dominant firm,

ln
Ph
P→P

Ph
P→D

=
1

σ

(
wh

P − wh
D − ahD + ϕEE + β(1− µ)Eh′|h,NV (h′, P, χ′)− β(1− µ)Eh′|h,EV (h′, D, χ′)

)
.

Although workers employed at either the dominant or peripheral firm are subject to the same human capital
accumulation process, the worker values are not equal because of the switching costs. Hence the continuation
values in the expression above do not cancel and we do not have a clear mapping from the moments to ahD.

39 Consider for example the differential rate at which the non-employed remain non-employed relative to
moving to a peripheral firm,

ln
Ph
N→N

Ph
N→P

=
1

σ

(
bh − wh

P − ϕNE + β(1− µ)Eh′|h,NV (h′, N, χ′)− β(1− µ)Eh′|h,EV (h′, P, χ′)

)
.

Since the human capital accumulation process differs for employed and non-employed workers, the continu-
ation values do not cancel.
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are non-employed for three years or more in a row, which I consider to be out of the labor
force and not actively searching for employment.

K-means Clustering. I bin observations of workers across years into H = 3 different
human capital levels using the k-means clustering algorithm. In the model, because of the
taste shocks, there will never be zero mass at any of the points in the joint distribution
of workers across human capital levels and firms and non-employment. Thus the main
consideration when clustering workers in the data is to do so in a way that does not yield 0
workers in any of the bins. For this reason, I perform the clustering separately for each firm
type (leader, non-leader, non-employment) and market tuple. I cluster workers using the
following characteristics: employment status, wages, hours, experience, age, and gender.40

4.4 Representative Markets

The model introduced in Section 2 is for a single labor market. Since there are tens of
thousands of markets, it is not feasible to estimate the model separately for each market
in the data. Instead, I segment the data in two according to the employment share of
the leading firm: if the employment share of the leader in a market is below (above) the
median then I classify the market as belonging to the bottom (top). I make this split so that
each of the two markets contains 50% of the workers in France therefore I refer to them as
representative markets. The (employment weighted) mean leader share is 20%, with a long
right tail (see Table 4 and the y-axis of the heatmap in Appendix A.5 for more). In Table 6,
I report summary statistics for each computed in the DADS-Postes.41 The representative
market grouping markets where the leader has a low employment share (henceforth bottom)
has many firms and workers and is not concentrated as measured by the employment HHI.
However, the leader employs roughly ten times more workers than the other firms which
suggests a fair amount of market power. The other representative market (henceforth top)
has a lot fewer firms and workers and a very high employment HHI.

40 As previously mentioned, I do not observe worker education in the data.
41 The moments I use for estimation are computed in the DADS-Panel. However, since it only contains

1/12th of workers (those born in October), it is not possible to accurately compute employment shares and
the employment HHI. Hence I segment markets along the leader’s employment share in the DADS-Postes
first before computing the moments for estimation in the DADS-Panel.
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Table 6: Representative Markets Summary Statistics

Bottom Top
Number of Firms 2,057 166
Number of Workers 8,472 1,867
Employment HHI 140 2,305

Leader Share (%) 5.4 35.7
Avg. Non-Leader Share (%) 0.46 2.57

Number of Markets 14,959 47,171

Note: Means weighted by market employment. Computed
in DADS Postes 2015.

In both representative markets, I compute the (market) employment weighted means of
the CCPs P data, wages wdata, and the distribution χdata of workers across human capital
levels and firms which I report in Section 4.5.

4.5 Model Fit

Supply. The empirical and model implied moments for the supply-side estimation are
presented in Table 7 and Table 8. Overall, the model fits the moments well and the fit is
slightly better for the top representative market. The model is able to match the CCPs out
of the dominant firm and non-employment, with the sole exception being the probability
workers at the dominant firm choose non-employment (P h

D→N) in the bottom representative
market. However, it misses on the probability workers remain at a peripheral firm (P h

P→P ),
underestimating these by roughly an order of magnitude. Instead, in the model, more workers
go to other peripheral firms (P h

P→P ′). Moreover, as before, for the bottom representative
market, the model struggles to match the rate at which workers at the peripheral firms
choose non-employment (P h

P→N).
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Table 7: Model Fit of Conditional Choice Probabilities

Top

Data Model

h = h1

D P P ′ N D P P ′ N
D 0.55 0.41 0.05 D 0.57 0.41 0.03
P 0.13 0.41 0.40 0.05 P 0.14 0.06 0.75 0.05
N 0.18 0.65 0.17 N 0.14 0.73 0.13

h = h2

D P P ′ N D P P ′ N
D 0.52 0.43 0.05 D 0.53 0.44 0.03
P 0.12 0.41 0.41 0.05 P 0.13 0.06 0.76 0.06
N 0.15 0.67 0.18 N 0.12 0.73 0.15

h = h3

D P P ′ N D P P ′ N
D 0.54 0.42 0.04 D 0.54 0.42 0.03
P 0.14 0.41 0.40 0.05 P 0.13 0.06 0.74 0.07
N 0.20 0.63 0.18 N 0.12 0.70 0.18

Bottom

Data Model

h = h1

D P P ′ N D P P ′ N
D 0.33 0.58 0.09 D 0.35 0.65 0.00
P 0.04 0.37 0.51 0.08 P 0.05 0.02 0.93 0.00
N 0.05 0.73 0.22 N 0.04 0.74 0.22

h = h2

D P P ′ N D P P ′ N
D 0.33 0.57 0.10 D 0.33 0.67 0.00
P 0.04 0.38 0.49 0.09 P 0.05 0.02 0.93 0.00
N 0.06 0.69 0.26 N 0.03 0.71 0.26

h = h3

D P P ′ N D P P ′ N
D 0.35 0.57 0.10 D 0.35 0.65 0.00
P 0.05 0.38 0.47 0.09 P 0.05 0.02 0.92 0.00
N 0.07 0.67 0.26 N 0.04 0.70 0.26

Note: This table reports both the empirical and estimated conditional choice
probabilities for both representative markets. The empirical probabilities are com-
puted in the DADS-Panel.

Next, Table 8 presents the empirical and model implied stationary distribution (in per-
centages). In both markets, the model fit is almost perfect. The only aspect the model strug-
gles to match is non-employment. In the bottom representative market, the non-employment
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rate is only half of what it is in the data, and in the top representative market, it is about 50%
bigger. The missing mass in non-employment is attributed to the peripheral firms: about
5% more workers and 2% less workers are at peripheral firms in the bottom and top markets,
respectively. This discrepancy is tightly linked to the model fit of the CCPs discussed above.
For example, in the bottom representative market, workers barely go to non-employment
from employment compared to the data which is why the model is unable to match the
non-employment rate.

Table 8: Model Fit of Stationary Distribution

Bottom Top

Data Model Data Model
Dominant
h = h1 2.26 2.22 7.31 7.29
h = h2 2.05 2.03 6.92 6.94
h = h3 2.34 2.32 7.65 7.65
Total 6.65 6.57 21.9 21.9

Non-Employed
h = h1 3.20 3.73 1.86 4.36
h = h2 3.54 0.91 2.14 2.14
h = h3 3.56 0.34 1.94 1.94
Total 10.3 4.98 5.94 8.45

Total Peripheral
h = h1 29.6 29.8 23.3 22.0
h = h2 29.9 29.4 24.7 23.7
h = h3 26.5 29.3 24.2 24.0
Total 83.0 88.5 72.2 69.7

Note: This table reports the empirical and estimated distribu-
tion across human capital levels, firms, and non-employment.
The units are percents.

Demand. Table 9 reports the empirical wages for both the dominant and peripheral firms
as well as the model implied dominant wages. For the bottom representative market, the
fit is remarkably good. On average, the absolute distance from the empirical wages is 3.3%,
with the biggest miss being wages for the most skilled workers which are 5.4% higher than
in the data. The model is even able to replicate the non-monotonicity in wages present in
the data. For the top representative market, the fit is also very good. The average distance
from the empirical wages is 3.9%, with the biggest miss being wages for the most skilled
workers which are 5.4% lower than in the data. As before, the model can also replicate the
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non-monotonicity.

Table 9: Model Fit of Wages

Bottom Top

wh
D wh

D

wh
P Data Model wh

P Data Model
h = h1 21,325 21,662 21,017 22,178 24,768 24,274
h = h2 24,012 17,726 17,960 22,359 28,068 26,754
h = h3 25,693 19,036 20,130 23,433 25,764 24,492

Mean 23,615 19,532 19,744 22,663 26,219 25, 161

Note: This table reports dominant and peripheral wages for both represen-
tative markets. The first column in each market is wh

P , the employment-
weighted mean wage offered to workers with human capital h by non-leader
firms. The second column is wh

D, the employment-weighted mean wage of-
fered by the leader. The third column is the model-implied dominant wages
at the estimated parameter values. The mean is weighted by the empirical
and model-implied aggregate distributions of human capital. The units are
2015 euros.

4.6 Parameter Estimates

Estimates. I now briefly discuss the parameter estimates reported in Table 10 before
turning to the welfare losses. Both sets of estimates imply that firms have a significant
amount of monopsony power. In the bottom representative market, the amenity value to
workers of being employed at the dominant firm relative to a peripheral firm is 3,113, 9,648,
and 10,128 euros depending on the worker’s human capital level. These correspond to 14%,
54%, and 53% of the wage.42 In the top representative market, the amenity value estimates
are even larger: 120%, 90%, and 114% of wages. Such big amenity values are necessary for
the model to match the dominant firm’s employment share. The dominant firm is much
larger than the peripheral firms and this difference can not fully be explained by the gap
in wages which is relatively small. In fact, for some workers, wages at the peripheral firms
are higher. Furthermore, the taste shocks do not help either because they differentiate all
firms and not specifically the dominant firm versus any of the peripheral firms. The only
differentiating factor between firm types is the amenities, which the model infers must be
very large to explain such a difference in employment shares.

42 The non-monotonicity is inherited from the wages.
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Table 10: Parameter Estimates

Parameter Description Bottom Top

a1D Amenities 3,113 29,674
a2D 9,648 25,334
a3D 10,128 29,389

ϕEE Switching costs 2,958 27,585
ϕNE 48,006 41,862

σ Scale of taste shocks 0.13 1.39

b1 Home production 21,973 32,682
b2 24,169 35,012
b3 25,451 38,179

pD Productivity gap 2.27 3.99

g1E Learning rates 0.05 0.05
g2E 0.03 0.04
g3N Skill decay 0.62 0.14
g2N 0.62 0.03

Note: Home production, switching costs, standard deviations
of the taste shocks, and amenity values at the dominant firm are
in 2015 euros.

Next, the estimates for the switching costs are also very large, giving firms additional
market power. In the bottom representative market, the cost of switching firms is roughly
15% of average wages, whereas in the top representative market it is roughly equal to the
average wage. This difference stems from two related features of the data: 1. the bottom
representative market has a lot more firms than the top representative market, and 2. it has
bigger EE rates across all human capital levels and firm types, e.g. 58% of workers at the
dominant firm move to a peripheral firm for h = h1 versus 41% in the top representative
market. Through the lens of the model, these two features of the data imply that switching
firms is much more costly in the top representative market. In contrast, the cost of moving
out of non-employment is much larger at approximately twice the average wage in both
representative markets. Finally, the last parameter governing the extent of monopsony power
is the scale of the taste shocks. The estimates imply a standard deviation of 1,647 euros
and 17,883 euros in the bottom and top representative markets, respectively. Hence workers
have strong preferences for the different firms and non-employment, above and beyond the
differences in wages, home production, and amenities.
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For production, I find that the productivity gap between the dominant firm and the
peripheral firms is large: 2.27 in the less concentrated markets and 3.99 in the more concen-
trated markets. Home production of the non-employed is roughly 88% and 65% of the sum
of wages and amenities at the dominant firm in the bottom and top representative markets,
respectively.43

Finally, I find that the skills of workers decay faster than they appreciate. Human capital
appreciates relatively slowly while on the job, likely because there are only three different
human capital levels. In contrast, workers’ skills depreciate an order of magnitude faster
when they are non-employed. This makes non-employment particularly costly both for the
workers and the firms. A worker with h = h3 in the bottom representative market who
becomes non-employed will see their skill decay to h = h2 with probability 62%. Upon
re-entry to employment, their human capital appreciates back to h = h3 with probability
5%, meaning that on average it will take them 20 periods (years) to recover. This is not as
stark in the top representative market where estimates of g3N and g2N are lower.

5 Welfare Costs of Dynamic Monopsony

Having estimated the model parameters, I now turn to quantifying the welfare costs of
monopsony in the presence of on-the-job learning. I first discuss markdowns for both firm
types and then quantify the welfare gains from forcing firms to price competitively.

5.1 Markdowns

Peripheral Markdowns. The first six columns of Table 11 present the estimated labor
supply elasticities εhP , the markdowns ηhP , and the gap between wages in the decentralized
and centralized equilibria νh

P for the peripheral firms. Recall that since the peripheral firms
are static monopsonists, we have ηhP = νh

P . An elasticity of 15.3 means that for a 1%
decrease in wages offered, employment decreases by 15.3%. A markdown of 0.939 means that
the worker receives 93.9% of their marginal product of labor. A high markdown therefore
corresponds to the firm having less wage-setting power. There are two main takeaways from
these estimates. First, as expected, the markdowns are lower in the bottom representative
market. These correspond to less concentrated markets where there are many firms and the
dominant firm is not as big as in the top representative market. Furthermore, the parameter
estimates discussed in Section 4.6 imply that firms have less monopsony power, e.g. workers
do not have very strong idiosyncratic preferences for the different firms and non-employment.

43 In terms of market shares, non-employment is closer to the dominant firm than to the peripheral firms.
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Therefore if one of the many peripheral firms suddenly offers workers a lower wage, holding
all else equal, it will attract fewer workers. In the top representative market, the elasticity
is smaller because there are fewer firms and workers have stronger taste shocks. So workers
are less sensitive to one-time wage drops. Second, note that within a firm, markdowns are
increasing in the human capital of workers. This monotonicity is inherited from the static
component of the marginal product of labor, which is also increasing in human capital. Since
the peripheral firms behave as if they were atomistic, the wages they offer do not reflect any
future changes in human capital.

Table 11: Labor Supply Elasticities and Markdowns

Peripheral Dominant

Bottom Top Bottom Top

εhP ηhP νh
P εhP ηhP νh

P εhD ηhD νh
D εhD ηhD νh

D

h = h1 15.3 0.939 0.939 1.56 0.610 0.610 13.5 0.931 0.420 1.12 0.528 0.171
h = h2 17.0 0.944 0.944 1.57 0.612 0.612 11.3 0.919 0.307 1.33 0.571 0.192
h = h3 18.1 0.948 0.948 1.65 0.623 0.623 11.8 0.922 0.310 1.19 0.543 0.172

Mean 16.7 0.943 0.943 1.59 0.615 0.615 12.2 0.924 0.348 1.21 0.547 0.178

Note: This table reports, for both estimated markets, both firm types, and for all human capital levels, the
labor supply elasticity ε, the markdown η, and the gap ν between the wages offered in the decentralized and
centralized equilibria. The mean is weighted by the aggregate distribution of human capital.

Dominant Markdowns. The second six columns of Table 11 report the estimated labor
supply elasticities εhD, the markdowns ηhD, and the gap between wages in the decentralized
and centralized equilibria νh

D for the dominant firm. Workers are less sensitive to wage
changes at the dominant firm: the average labor supply elasticities are roughly 27% and 24%
smaller than the peripheral firms’ labor supply elasticities in the bottom and top markets,
respectively. The reason for this is twofold. First, the amenities are a form of classic
differentiation between the dominant and peripheral firms. The estimates for the amenity
values are big, i.e. workers have strong preferences for the dominant firm above and beyond
the wage differential. Second, there are a lot of peripheral firms. So when one peripheral firm
lowers its wages, workers react by not only going to the dominant firm and non-employment
but also by going to the other peripheral firms. These lower elasticities imply that the
dominant firm can charge a lower markdown, i.e. pay workers a smaller share of their
marginal product of labor. As with the peripheral firms, the markdown is higher for the
bottom representative market. On average, the dominant firm pays workers about 92% and
55% of their full marginal product (both the static and dynamic components) in the bottom
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and top representative markets, respectively.
However, as shown in Corollary 2, the gap to the efficient allocation νh

D is not equal to
the markdown ηhD. In this case, we have νh

D < ηhD in both markets and for all h. For example,
in the bottom representative market for the lowest human capital level wages are 35% of
the static marginal product, i.e. the wage that decentralizes the efficient allocation. This
is much smaller than the markdown which is about 92%. Such large gaps to the efficient
outcome will imply that the welfare gains from forcing firms to price competitively will be
very large.

5.2 Welfare

I now look at the welfare implications of forcing firms to offer the wage that decentralizes
the efficient allocation, i.e. by setting νh

D = νh
P = 1 for all h, which I report in the last

columns of Table 12.. Recall that welfare is the planner’s objective, given by Equation (24).
Note that this jointly forces all firms to price competitively, not just the dominant firm or
a peripheral firm, so this exercise is equivalent to shutting off all wage-setting power in the
market. Moreover, because of the magnitudes of νh

D (see Table 11), this exercise entails a
roughly three-fold increase in the wages of the dominant firm. I find that the welfare losses
are very large in both markets. Welfare and output are approximately 60 percent lower than
they would be if νh

D = νh
P = 1 for all h. There are also significant human capital costs: the

aggregate distribution of human capital is shifted to the left relative, i.e. there are more
low-skill workers (h = h1, h2) and less high-skill workers (h = h3).

The large numbers are to be expected given the estimates presented in the previous
section. As Table 11 shows, νh

i is low for all i, h and especially so for the dominant firm.
Moreover, the dominant firm is not only much more productive than the peripheral firms
(pD is 2.3 and 4 in the bottom and top markets, respectively) but also offers workers higher
utility because of the amenity values. Hence, when setting νh

i = 1, utility at the dominant
firm far eclipses what workers would receive in either employment or non-employment and
so they almost all move to the dominant firm. Because of the taste shocks, there are still
workers who prefer the peripheral firms or non-employment, but not many.

There are two main sources behind these welfare losses. First, there is an employment
effect: increasing wages drives workers out of non-employment. Second, there is a reallocation
effect within employment between the two firm types, i.e. workers move from the peripheral
firms to the dominant firms. Hence there are more employed workers which means human
capital in the market is higher. Moreover, there are more workers at the dominant firm
which means output and welfare increase. The increase in output is purely mechanical:
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the dominant firm is significantly more productive than the other firms so an increase in
employment at the dominant firm will increase market-wide output. The increase in welfare
above and beyond output is driven by the amenities and switching costs.

Table 12: Counterfactual Welfare

Bottom Top

10% 25% 50% 100% 10% 25% 50% 100%

Leader Share −93% −93% −93% −93% −66% −76% −77% −77%
Non-employment Rate +21% +27% +27% +27% +74% +196% +232% +236%

Share h = h1 +1% +1% +1% +1% +4% +6% +6% +6%
Share h = h2 −1% −1% −1% −1% +10% +17% +18% +18%
Share h = h3 −1% −1% −1% −1% −12% −18% −18% −19%

Output −51% −52% −52% −52% −44% −57% −58% −58%
Welfare −58% −59% −59% −59% −54% −66% −68% −68%

Note: This table reports counterfactual outcomes when the wages get closer to the ones that decentralize the
efficient allocation: wh

i +x× (wh
i,S −wh

i ) for x ∈ {0.1, 0.25, 0.5, 1}. Units are percent change of the decentralized
equilibrium relative to the counterfactual economy considered.

This counterfactual is perhaps not very pragmatic since no policy instrument forces firms
to price competitively. However, policies like the minimum wage may allow us to partially
bridge the gap. In the first three columns for each representative market in Table 12, I
report the effects of increasing wages 10, 25, and 50 percent closer to the efficient wages.
For the bottom representative market, the benefits are almost fully reached when bridging
the gap by only 10% (and fully reached for 25% and 50%). This is because the labor supply
elasticities are big and so a 10% increase is enough to push all of the workers to the dominant
firm. This is a somewhat striking result that may be of particular interest to policymakers:
in the large markets with lower concentration, only (relatively) small changes in wages suffice
to recover almost the entirety of the welfare gains from removing monopsony power. For
the top representative market, the welfare losses are more progressive as the gap in wages is
bridged. Nonetheless, even the relatively small increase of 10% results in about 80% of the
total output and welfare losses possible, and about 2/3 of the losses in human capital.

5.3 Decomposing the Welfare Losses

Finally, I examine how much of the welfare losses can be attributed to the dynamics. The
only model ingredient making the environment dynamic is human capital accumulation.
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Hence, isolating the static effects amounts to removing changes in human capital. To do so,
I remove the birth/death process and learning by setting µ = g1E = g2E = g3N = g2N = 0.
Workers are now infinitely-lived and their human capital is immutable. I hold all other
supply-side parameters fixed at their estimates reported in Table 10. Hence, the labor supply
elasticities and markdowns are also the same as the ones reported in Table 11. However, the
estimates for the productivity gap pD are no longer the same. Without the dynamics, the
wage equation for the dominant firm, Equation (16), reduces to

wh
D =

εhD(χ,wD)

εhD(χ,wD) + 1
× ∂FD(χ,wD)

∂mh
D(χ,wD)

,

which can be inverted to recover pD. The dominant firm is now also a static monopsonist
like the peripheral firms. Nonetheless, it remains differentiated because of the amenities.
So we should still expect to find pD > 1. The new estimates for pD are much smaller
than they were with dynamics: 1.02 (compared to 2.27 previously) and 1.34 (compared to
3.99 previously) for the bottom and top representative markets, respectively.44 Note that
this also highlights the importance of dynamics in estimating pD. Ignoring human capital
accumulation and applying the static Lerner formula above leads to estimates of pD that are
biased downwards.

Table 13: Decomposition of the Welfare Losses

Bottom Top

No dynamics Full No dynamics Full

Leader Share −90% −93% −65% −77%
Share h = h1 +0% +1% +0% +6%
Share h = h2 +0% −1% +0% +18%
Share h = h3 +0% −1% +0% −19%

Output +6.8% −52% +37% −58%
Welfare −18% −59% −4.5% −68%

Note: The first columns report counterfactual outcomes when shutting
off human capital accumulation. The second columns are copied from Ta-
ble 12. Units are percent change of the decentralized equilibrium relative
to the counterfactual economy considered.

In Table 13, I report the welfare losses for this counterfactual where the dynamics are
turned off. I hold fixed the aggregate distribution of human capital. Without the birth/death

44 There are H estimates of pD when inverting this equation. They are almost identical, but to be conser-
vative I use the largest value.
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process, the non-employment rate is machine epsilon45, so I do not report the change. Output
is lower in the centralized equilibrium with no human capital accumulation than in the
decentralized equilibrium because of the difference in pD estimates. The welfare losses are
underestimated by 69 and 93 percent in the bottom and top markets, respectively, when
failing to account for human capital accumulation.

6 Conclusion

In this paper, I study how the welfare costs of monopsony change when accounting for
endogenous human capital accumulation. In doing so, I make several contributions to the
existing literature. Motivated by novel descriptive evidence on local labor markets in France
and their competitive structure, I develop a general equilibrium model of segmented markets.
The model features worker heterogeneity in the form of general human capital and a finite
number of firms that compete for them. Importantly, the model contains rich dynamics due
to human capital accumulation. I leverage tools from the machine learning literature on
deep reinforcement learning to solve the equilibrium. I then study a planner who maximizes
market-wide welfare by allocating workers across firms and non-employment and characterize
the wages that decentralize the efficient outcome. I find that the markdown, which now has
an additional dynamic term relative to its usual formulation, is no longer a sufficient statistic
for the welfare losses due to monopsony. I estimate the model using rich administrative
matched employee-employer data from France and show that the welfare gains from forcing
firms to price competitively, or even just a bit closer to competitively, are large both in terms
of output and human capital.

I believe this paper provides several avenues for future research. Perhaps the most promis-
ing is to study how the interaction of on-the-job learning and monopsony power changes the
policy implications of monopsony. In future work, I plan to modify the framework to ex-
amine the effects of the minimum wage and mergers. The model is particularly well suited
to studying mergers because there are finitely many firms. Another potentially fruitful ex-
tension would be to allow for richer human capital dynamics, both in terms of adding an
intensive margin and firm-specific human capital. As discussed in Section 2.8, the framework
can accommodate these changes. Finally, I believe this paper showcases the importance of
adding dynamics to workhorse models of monopsony. Human capital accumulation is one of
many ways of doing this and more work is needed to fully understand what shapes firms’
incentives to price below the marginal product of labor.

45 It is not exactly 0 because of the taste shocks, but the planner reallocates almost all the workers to
employment.
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A Data Appendix

A.1 Variables

– Wages: I use the gross annual wage, measured by the variable S_BRUT in the DADS-
Postes and the variable SB in the DADS-Panel. These are neither top- nor bottom-
coded and include base salary, overtime, and bonuses. I deflate wages to 2015 euros
throughout using the CPI provided by the INSEE at https://www.insee.fr/fr/

statistiques/2122401#tableau-figure1.

– Hours: I use reported yearly hours worked as measured by the variable NBHEUR. As
discussed in the main text, it is not possible to distinguish between reported hours and
actual hours.

– Commuting Zone: I use the commuting zone of the establishment given by the vari-
able ZEMPT in DADS-Postes. I use the crosswalk46 between regions, communes, and
commuting zones provided by the INSEE to infer commuting zones in the DADS-Panel.

– Occupation: I use 4-digit occupation codes. The full list of the 360 distinct occupation
codes can be found on INSEE’s website at https://www.insee.fr/fr/metadonnees/
pcs2003/?champRecherche=true.

A.2 Herfindahl-Hirschman Index

The employment Herfindahl-Hirschman Index (HHI) for market i is defined as HHIi :=∑
j∈i s

2
j , where

sj :=
ej∑
k∈i ek

× 100

is the employment share of firm j. Note that the square gives proportionally more weight
to firms with bigger market shares. The largest HHI value is 10,000 which corresponds to a
market with a single firm. The Horizontal Merger Guidelines (DOJ and FTC 2010) classifies
markets as follows:

- HHI ≤ 1,500: unconcentrated

- HHI ∈ (1, 500, 2, 500): moderately concentrated

- HHI ≥ 2,500: highly concentrated

The HHI can also be computed using wage shares instead of employment shares.
46 The crosswalk can be downloaded at https://www.insee.fr/fr/information/2028028.
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A.3 Occupations

Table A.2: Occupation Summary Statistics

Mean SD p25 Median p75 p95
Workers/ 2-digit occ 567,448 573,765 32,692 333,143 1,122,509 1,751,103
Workers/ 4-digit occ 42,559 62,524 8,550 22,585 44,631 174,875

2-digit occ/firm (unweighted) 2.18 1.93 1 1 3 6
2-digit occ/firm (weighted) 3.66 6.58 1 1 1 22
4-digit occ/firm (unweighted) 3.10 5.29 1 2 3 10
4-digit occ/firm (weighted) 27.6 67.6 3 3 3 243

Number of 2-Digit Occupations 27
Number of 4-Digit Occupations 360

Note: Weighted by firm employment.
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Table A.1: Granularity of PCS-ESE occupation codes

4 Intermediate Professions

42 Schoolteachers, instructors and similar

43 Intermediate health and social work professions

431a Nursing executives
431b Psychiatric nurses
431c Childcare workers
431d Specialized nurses (other than psychiatric and pediatric)
431e Midwives (salaried)
431f Nurses in general care (salaried)
432b Rehabilitation massage therapists (salaried)
432d Other rehabilitation specialists (salaried)
433a Medical technicians
433b Eyewear opticians and audioprosthetists (salaried)
433c Other medical device specialists (salaried)
433d Pharmacy assistants
434a Socio-educational intervention managers
434b Social work assistants
434c Family counselors
434d Specialized educators
434e Support workers
434f Specialized technical educators, workshop instructors
434g Early childhood educators
435a Directors of socio-cultural and leisure centers
435b Socio-cultural and leisure organizers

44 Clergy, religious

45 Intermediate administrative professions of the public service

46 Intermediate administrative and commercial professions of companies

47 Technicians (except service technicians)

48 Foremen and supervisors

Note: This table illustrates occupation coding in the DADS, the PCS-ESE. Intermediate Pro-
fessions (1-digit occupation code 4) is split into 7 2-digit occupation codes. Each of these is fur-
ther split into many 4-digit occupation codes. This split is shown for Intermediate health and
social work professions. The full list of occupation codes can be found on INSEE’s website at
https://www.insee.fr/fr/metadonnees/pcs2003/?champRecherche=true.
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A.4 Commuting Zones

Note: Map of the 304 metropolitan commuting zones of France according to the 2010 zoning rules. In
addition to these, there are 18 overseas commuting zones in Guadeloupe, Martinique, Guyane, La Réunion,
and Mayotte. The map with the shapefile created by Opendatasoft using geographic data from the French
government at
https://www.data.gouv.fr/fr/datasets/contours-des-regions-francaises-sur-openstreetmap/.

Figure A.1: Metropolitan Commuting Zones of France

Table A.3: Commuting Zones Summary Statistics

Mean SD p25 Median p75 p95
Workers/CZ 51,212 148,204 11,208 20,150 47,628 155,161
Firms/CZ (weighted) 139,420 69,862 43,420 180,217 180,217 180,217

4-digit occ/CZ (weighted) 355 39 360 360 360 360
2-digit occ/CZ (weighted) 27 3 27 27 27 27

Number of CZs 305

Note: Weighted by commuting zone employment.
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A.5 Additional Heatmap
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Note: This plots the joint distribution of the ratio of the leader’s employment share and the market size
(number of firms). Both variables are employment-weighted and split into deciles so that each row and
column contains 10% of workers.

Figure A.2: Heatmap between Leader Share and Market Size (Deciles)

A.6 Alternative Market Definition

Table A.4: Market Summary Statistics (2-digit occ × CZ)

Mean SD p25 Median p75 p95
Number of Firms (unweighted) 403 1,485 37 122 359 1,490
Number of Firms (weighted) 6,982 14,001 528 1,407 4,523 45,584
Number of Workers (unweighted) 2,001 9,490 74 450 1,620 7,492
Number of Workers (weighted) 47,003 101,583 2,915 7,736 24,234 291,672

Employment HHI (unweighted) 927 1,688 161 373 894 3,456
Employment HHI (weighted) 345 562 38 119 333 1,658

Number of Markets 7,656

Note: Unweighted statistics computed with equal weights for each market. Weighted statistics use market
employment as weights.
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Table A.5: Leader Summary Statistics (2-digit occ × CZ)

Mean SD p25 Median p75 p95
Leader Share (unweighted) 15 14 6.0 11 20 46
Leader Share (weighted) 11 12 2.8 5.9 13 40

Second Share (unweighted) 7.8 6.8 3.6 6.1 9.8 19
Second Share (weighted) 4.0 3.2 1.7 3.1 5.3 10
Leader Share / Second Share (unweighted) 2.5 4.3 1.2 1.5 2.1 6.8
Leader Share / Second Share (weighted) 4.3 8.9 1.1 1.4 2.3 22

Mean Non-Leader Share (unweighted) 2.0 3.9 0.2 0.7 2.0 8.3
Mean Non-Leader Share (weighted) 0.2 0.4 0.02 0.06 0.1 0.6
Leader Share / Mean Non-Leader Share (unweighted) 39 140 4.3 14 34 121
Leader Share / Mean Non-Leader Share (weighted) 329 647 38 82 285 1,320

Note: Unweighted statistics computed with equal weights for each market. Weighted statistics use market employment
as weights. Markets with only one firm (leader’s employment share = 100%) are excluded.

B Model Appendix

B.1 Model Notation
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Table B.1: Model Notation

Symbol Description

H ∈ N number of human capital levels
H := {h1, . . . , hH} human capital grid

h ∈ H index of human capital
µ ∈ (0, 1) birth/death rate
M ∈ N number of peripheral firms

P := {y1, y2, . . . , yM} the set of peripheral firms
i ∈ {D,P} index of firm type

pi firm productivity, with pD ≥ pP = 1
wi := {w1

i , w
2
i , . . . , w

H
i } wage menu chosen by i

y ∈ P index of peripheral firm
ϵ := {ϵD, ϵy1 , ϵy1 , . . . , ϵyM , ϵN} preference shocks for each firm and non-employment

σ > 0 scale of T1EV preference shocks
aD := (a1D, a

2
D, . . . , a

H
D) amenity value at dominant relative to peripheral

ϕEE, ϕNE > 0 switching cost incurred after EE and NE transitions, respectively
mi := {m1

i ,m
2
i , . . . ,m

H
i } labor supply curve of i given choice (wi, ni)

Fi(mi) output of firm i with workforce mi

bh home production
ghE prob. human capital of an employed worker appreciates
ghN prob. human capital of non-employed worker depreciates

(ey1P , . . . , eyMP , eD, u) ⊂ ∆(M+2)×H aggregate distribution of workers across firms and non-employment
êD, êP , û distributions after human capital accumulation

µ birth/death rate
s := (s1, s2, . . . , sH) total employment at peripheral firms
χ := (eD, u, s) ⊂ ∆3H aggregate state

o ∈ {D,P,N} worker origin
d ∈ {D,P, P ′, N} worker destination

V (h, o, χ) value to a worker with state (h, o, χ)
u(h, o, χ, d) contemporaneous utility to a worker with state (h, o, χ) choosing d
v(h, o, χ, d) choice-specific worker value

γEM Euler-Mascheroni constant
P h
o→d = P (d|h, o, χ) conditional choice probability

εhi labor supply elasticity
ηhi markdown

JD(χ) value of dominant firm with state χ
S(χ) planner’s value

S(h, o, χ) planner’s integrated value for worker of type (h, o)
νh
i gap between decentralized and centralized wages
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B.2 Worker Value

The closed-form expressions for the worker value functions are

V (h,D, χ) = σ

(
ln

(
exp

v(h,D, χ,D)

σ
+M exp

v(h,D, χ, P )

σ
+ exp

v(h,D, χ,N)

σ

)
+ γEM

)
V (h,N, χ) = σ

(
ln

(
exp

v(h,N, χ,D)

σ
+M exp

v(h,N, χ, P )

σ
+ exp

v(h,N, χ,N)

σ

)
+ γEM

)
V (h, P, χ) = σ

(
ln

(
exp

v(h, P, χ, P )

σ
+ (M − 1) exp

v(h, P, χ, P ′)

σ
+ exp

v(h, P, χ,D)

σ

+ exp
v(h, P, χ,N)

σ

)
+ γEM

)
where γEM ≈ 0.5772 is the Euler-Mascheroni constant and

v(h, o, χ, d) = u(h, o, χ, d) + β(1− µ)Eh′|h,dVσ(h
′, d, χ′).

B.3 Conditional Choice Probabilities

A worker employed at a peripheral firm can choose to either stay at the same peripheral
firm, move to another peripheral firm, move to the dominant firm, or go to non-employment.
The corresponding choice probabilities are

P h
P→P =

ev(h,P,χ,P )/σ

ev(h,P,χ,P )/σ + ev(h,P,χ,D)−ϕEE/σ + (M − 1)ev(h,P,χ,P ′)−ϕEE/σ + ev(h,P,χ,N)/σ

P h
P→D =

ev(h,P,χ,D)−ϕEE/σ

ev(h,P,χ,P )/σ + ev(h,P,χ,D)−ϕEE/σ + (M − 1)ev(h,P,χ,P ′)−ϕEE/σ + ev(h,P,χ,N)/σ

P h
P→P ′ =

ev(h,P,χ,P )−ϕEE/σ

ev(h,P,χ,P )/σ + ev(h,P,χ,D)−ϕEE/σ + (M − 1)ev(h,P,χ,P ′)−ϕEE/σ + ev(h,P,χ,N)/σ

P h
P→N =

ev(h,P,χ,N)/σ

ev(h,P,χ,P )/σ + ev(h,P,χ,D)−ϕEE/σ + (M − 1)ev(h,P,χ,P ′)−ϕEE/σ + ev(h,P,χ,N)/σ

where
P h
P→P + P h

P→D + (M − 1)P h
P→P ′ + P h

P→N = 1.

A worker employed at the dominant firm can choose to either stay at the dominant firm,
move to a peripheral firm, or go to non-employment. The corresponding choice probabilities
are

P h
D→D =

ev(h,D,χ,D)/σ

ev(h,D,χ,D)/σ +Mev(h,D,χ,P )−ϕEE/σ + ev(h,D,χ,N)/σ
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P h
D→P =

ev(h,D,χ,P )−ϕEE/σ

ev(h,D,χ,D)/σ +Mev(h,D,χ,P )−ϕEE/σ + ev(h,D,χ,N)/σ

P h
D→N =

ev(h,D,χ,N)/σ

ev(h,D,χ,D)/σ +Mev(h,D,χ,P )−ϕEE/σ + ev(h,D,χ,N)/σ

where
P h
D→D +MP h

D→P + P h
D→N = 1.

Similarly, a worker in non-employment can choose to go to either the dominant firm or the
peripheral firms or to stay non-employed:

P h
N→D =

ev(h,N,χ,D)−ϕNE/σ

ev(h,N,χ,D)−ϕNE/σ +Mev(h,N,χ,P )/σ + ev(h,N,χ,N)/σ

P h
N→P =

ev(h,N,χ,P )−ϕNE/σ

ev(h,N,χ,D)−ϕNE/σ +Mev(h,N,χ,P )−ϕNE/σ + ev(h,N,χ,N)/σ

P h
N→N =

ev(h,N,χ,N)/σ

ev(h,N,χ,D)−ϕNE/σ +Mev(h,N,χ,P )−ϕNE/σ + ev(h,N,χ,N)/σ

Again, we have
P h
N→D +MP h

N→P + P h
N→N = 1.

As in Aguirregabiria and Mira (2002), we can write the worker value in terms of the proba-
bilities:

Vσ(h, o, χ) =
∑

d∈{D,P,N}

P h
o→d ×

[
u(h, o, χ, d) + E[ϵd|h, o, χ, d] + β(1− µ)Eh′|h,dVσ(h

′, d, χ′)

]

for o ∈ {D,N} and

Vσ(h, o, χ) =
∑

d∈{D,P,P ′,N}

P h
o→d ×

[
u(h, o, χ, d) + E[ϵd|h, o, χ, d] + β(1− µ)Eh′|h,dVσ(h

′, d, χ′)

]

for o = P .
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B.4 Dominant Firm FOCs

The first-order conditions for the dominant firm’s choice of wages are

(wh
D)

∂FD(mD(χ,wD))

∂wh
D

−mD(χ,wD)−
∂mh

D(χ,wD)

∂wh
D

wh
D + β

∂JD(χ
′)

∂wh
D

= 0 (30)

Changing wages affects output, the labor supply curves, and the distribution next period.
For output, we have

∂FD(mD(χ,wD))

∂wh
D

=
∑
h

∂FD

∂mh
D

∂mh
D

∂wh
D

which, given the functional form assumption on output (Equation (2)),

FD(mD) = pD
∑
h∈H

mh
D × h,

can be simplified to

∂FD

∂mh
D

= pDh.

This is the marginal product of labor: ∂FD/∂m
h
D is how much output changes when the firm

has one more worker with human capital h. I discuss how the firm’s choice of policies affects
its own labor supply curve through the choice probabilities and next period’s distribution in
Appendix B.5.

Multiplying Equation (30) by ∂mD(χ,wD)
∂mD(χ,wD)

wh
D

wh
D

mD(χ,wD)
mD(χ,wD)

wh
D

mD(χ,wD)
, rearranging, and using the

definition of the labor supply elasticity with respect to wages given by Equation (11) yields
Equation (16) in the main text

wh
D =

εwD,h(χ,wD)

εwD,h(χ,wD) + 1

[
∂FD(χ,wD)

∂mD(χ,wD)
+ βE

∂JD(χ
′)

∂mh
D(χ,wD)

]
.

B.5 Mechanics of non-atomistic dominant firm

In this section, I illustrate what it means for the dominant firm to be non-atomistic. In
choosing wages, the dominant firm fully internalizes its effect on the sorting of workers, not
only to itself but also to rival peripheral firms and non-employment. This works through
the choice probabilities and shows up in two related ways in the firm’s first-order conditions
presented in Appendix B.4. First, the number of workers that decide to come changes as the
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firm varies its wages. Differentiating Equation (12), this change is given by

∂mh
D(χ,wD, nD)

∂wh
D

= ehD
∂P h

D→D

∂wh
D

+ sh
∂P h

P→D

∂wh
D

+ nh∂P
h
N→D

∂wh
D

.

Second, the policy choice today affects the continuation value through the distribution the
firm will face tomorrow. This effect can be computed using the chain rule:

∂JD(χ
′
D)

∂wh
D

=
∑
h

[
∂JD(χ

′
D)

∂(ehD)
′
∂(ehD)

′

∂wh
D

+
∂JD(χ

′
D)

∂(sh)′
∂(sh)′

∂wh
D

+
∂JD(χ

′
D)

∂(nh)′
∂(nh)′

∂wh
D

]
.

The first terms can all be computed using the envelope theorem. The dominant firm’s value
next period is

JD(χ
′) = max

w′
D∈RH

+

pi
∑
h∈H

(mh
D)

′h−
∑
h

(mh
D)

′(wh
D)

′ + βEJD(χ
′′
D)

where
(mh

D)
′ = (ehD)

′(P h
D→D)

′ + (sh)′(P h
P→D)

′ + (nh)′(P h
N→D)

′

and χ′′
D evolves according to the laws of motion presented in the Section 2.2. So, for example,

the change in the value next period given a change in the number of workers with human
capital h at the dominant firm next period is

∂JD(χ
′
D)

∂(ehD)
′ = pi(P

h
D→D)

′h− (P h
D→D)

′(wh
D)

′.

The rest of the terms can also be computed using the laws of motions. Again, this all works
through the conditional choice probabilities.

I now show how firms affect worker mobility through the conditional choice probabilities.
The choice of wages affects all choice probabilities. For ease of exposition, I only report how
P h
D→D changes when the dominant firm raises wages. This can easily be computed as

∂P h
D→D

∂wh
D

=
ev(h,D,χ,D)/σ ∂v(h,D,χ,D)

∂wh
D

σ
(
ev(h,D,χ,D)/σ +Mev(h,D,χ,P )/σ + ev(h,D,χ,N)/σ

)
−

ev(h,D,χ,D)/σ
(
ev(h,D,χ,D)/σ ∂v(h,D,χ,D)

∂wh
D

+Mev(h,D,χ,P )/σ ∂v(h,D,χ,P )

∂wh
D

+ ev(h,D,χ,N)/σ ∂v(h,D,χ,N)

∂wh
D

)
σ
(
ev(h,D,χ,D)/σ +Mev(h,D,χ,P )/σ + ev(h,D,χ,N)/σ

)2
=

1

σ
P h
D→D

[
(1− P h

D→D)
∂v(h,D, χ,D)

∂wh
D

−MP h
D→P

∂v(h,D, χ, P )

∂wh
D

− P h
D→N

∂v(h,D, χ,N)

∂wh
D

]
which takes on the usual form (e.g. Train 2009 section 3.6). However, there is one key
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feature here that separates this from standard dynamic discrete choice models: the supply
(usually demand in IO models) is dynamic. Indeed, recall that the choice-specific worker
value in this case is

v(h,D, χ,D) = wh
D + ahD + β(1− µ)Eh′|h,DVσ(h

′, D, χ′
D).

The presence of a continuation value makes the worker’s decision a dynamic one. This added
component implies that ∂Ph

D→D

∂wh
D

is a forward-looking expression. To see this, note that

∂v(h,D, χ,D)

∂wh
D

= 1 + β(1− µ)

[
1h<hH

ghE
∂V (h+ 1, D, χ′)

∂wh
D

+ (1− ghE)
∂V (h,D, χ′)

∂wh
D

]
where V (h,D, χ′) is the worker value next period,

V (h,D, χ′) = σ

(
ln

(
exp

v(h,D, χ′, D)

σ
+M exp

v(h,D, χ′, P )

σ
+exp

v(h,D, χ′, N)

σ

)
+γEM

)
.

Again, because firms are non-atomistic, the choice of policies today affects the worker value
next period through the change in the distribution χ′ = (e′D, n

′, s′). Applying the chain rule
to the worker value like we did to the firm value above,

∂V (h,D, χ′)

∂wh
D

=
∑
ĥ

[
∂V (h,D, χ′)

∂(eĥD)
′

∂(eĥD)
′

∂wh
D

+
∂V (h,D, χ′)

∂(sĥ)′
∂(sĥ)′

∂wh
D

+
∂V (h,D, χ′)

∂(nĥ)′
∂(nĥ)′

∂wh
D

]
.

Clearly, ∂V (h,D, χ′)/∂wh
D is a function of ∂v(h,D, χ′, D)/∂wh

D, which is itself a function of
∂V (h,D, χ′′)/∂wh

D, and so on and so forth.

B.6 Non-concavity

I show that the dominant firm’s profits are neither concave nor quasi-concave by counterex-
ample. I illustrate this by using the version of the model (no dynamics) that most closely
resembles the so-called “logit profit” models in the Operations Research literature (e.g. Dong,
Kouvelis, and Tian 2009, Gallego and Wang 2014, and Song, Song, and Shen 2021)47 which
have long been known to be non-concave (Hanson and Martin 1996).

47 An important result from this literature is that, although the profits are not concave in prices, they are
concave in the market shares (conditional choice probabilities). Since there is a one-to-one mapping between
prices and market shares, the firm’s problem can be recast in probability space. This is a very strong and
elegant result that can be used to bypass numerical issues arising from the non-concavity. I have used this
to solve the static version of the model by recasting the problem in probability space, but it is not clear if
this approach still holds when adding dynamics.
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Lemma 1 (Concavity). The firm value function given by Equation (15) is neither concave
nor quasi-concave.

Proof. By counterexample. Suppose N = 1 and H = 2, i.e. there is just one peripheral
firm and two human capital levels low L and high H. Furthermore, consider the following
parameterization:

(β = 0, bL = 0, bH = 0, aLD = 0, aHD = 0, ϕEE = 0, ϕNE = 0, σ = 1, pD = 100).

Now, suppose the peripheral firm has chosen wages (equal to human capital)

wP := (wP,L, wP,H) = (23, 31).

Next, consider the following two wage schedules for the dominant firm

w1
D := (w1

D,L, w
1
D,H) = (17, 95)

w2
D := (w2

D,L, w
2
D,H) = (38, 42)

Since there are no switching costs, worker origin does not matter so the firm’s labor supply
curve is the product of the aggregate distribution of human capital and the conditional choice
probability. Suppose half of the workers have low human capital. Then the dominant firm’s
profits for both of these earnings schedules given wP are

JD(w
1
D) = 100− 1

2

e17

e17 + e23 + e0
× 17− 1

2

e95

e95 + e31 + e0
× 95 ≈ 52.5

JD(w
2
D) = 100− 1

2

e38

e38 + e23 + e0
× 38− 1

2

e42

e42 + e31 + e0
× 42 ≈ 60.0

Now consider a convex combination of these earnings

w3
D :=

1

2
× w1

D +
1

2
× w2

D = (27.5, 68.5)

These yield profits

JD(w
3
D) = 100− 1

2

e27.5

e27.5 + e23 + e0
× 27.5− 1

2

e68.5

e68.5 + e31 + e0
× 68.5 ≈ 52.2

<
1

2
JD(w

1
D) +

1

2
JD(w

2
D) ≈ 56.2

71



so the dominant firm’s profits are not concave. We also have

JD(w
3
D) ≈ 52.2 < min{JD(w1

D), JD(w
2
D)} ≈ 52.5

so the dominant firm’s profits are not quasi-concave.

C Computational Appendix

C.1 Fixed point inside the firm problem

The dominant firm’s choice of wD affects its value in three ways:

1. It affects contemporaneous revenue through output and the wage bill.

2. It affects the labor supply mD through the choice probabilities. All 10×H probabilities
are affected. In Appendix B.5, I illustrate this with P h

D→D, the probability the dominant
firm retains a worker of type h. When the dominant firm varies the wage it offers, it
varies P h

D→D in two ways. First, it changes the choice-specific value function v(h,D, χ).
Second, it changes χ′ (see point 3. below) and so the continuation values in V (h, o, χ)

for all origins o ∈ {D,P,N}.

3. It affects the aggregate state tomorrow, χ′.

Notice that 2. and 3. constitute a fixed point problem. To compute χ′, you need to know
the full set of implied choice probabilities. And to compute the choice probabilities, you
need to know χ′. This fixed point must be solved for every menu of wages considered when
searching for the optimal firm policies. Hence the presence of such a fixed point is particularly
computationally burdensome because it would be at the center of many standard solution
methods.

I am able to avoid this issue by parameterizing the laws of motion for the state tomorrow
χ′ given today’s state χ and a choice of policies wD using a neural network. The dominant
firm takes this mapping as given when choosing wages. I discuss this in more detail below.

C.2 Neural Networks

In this section, I provide an overview of the basics of neural networks for prediction. For
excellent textbook treatments, see Bishop (2006) and Goodfellow, Bengio, and Courville
(2016).
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Definition. A neural network is a nonlinear function f : Rm → Rn that consists of in-
terconnected nodes, or neurons, organized into layers. There are three types of layers: the
input layer, any number of hidden layers, and the output layer. The number of hidden layers
is referred to as the depth of the neural network. Deep learning is commonly used to describe
neural networks with more than one hidden layer. The number of nodes is referred to as the
width of a layer. In Figure C.1a, I provide an example of a neural network with two inputs,
two hidden layers with 4 neurons each, and 3 outputs. This is an example of a dense neural
network because each node is fully connected to every node in the previous layer.

input
layer

two hidden layers output
layer

(a) Network diagram

x1

x2

a14

a13

a12

a11w0
1,1w0
1,1

w0
2,1w0
2,1

= h1(w
0
1,1x1 + w0

2,1x2)

(b) Neuron

Note: Tikz code adapted from https://tikz.net/neural_networks/.

Figure C.1: Example of a Neural Network

The simplest neural network is called a perceptron and has no hidden layers. Each output
k ∈ {1, 2, . . . , n} is a linear combination of the inputs,

yk(x,w) =
m∑
i=1

w0
i,kxi.

The 0 superscript indicates that the weights correspond to the input layer. This neural
network has m× n weights w0

i,j to estimate. However, the universal approximation theorem
(Hornik et al. 1989) does not apply to perceptrons. To improve the approximation, we add
a hidden layer with p ∈ N nodes. This entails applying a nonlinear transformation of the
linear combination of inputs using an activation function h. The resulting transformations
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are in turn weighted so that the outputs are now given by

yk(x,w) =

p∑
j=1

w1
j,k h

( m∑
i=1

w0
i,jxi

)
︸ ︷︷ ︸

aj

,

where aj is the jth neuron of the hidden layer. The universal approximation theorem now
applies, but at a cost: there are additional parameters to estimate. We have m× p+ p× n

weights. However, the number of weights scales linearly with the number of inputs, as
opposed to exponentially with common series such as Chebyshev of Hermite polynomials.
This is the reason why neural networks are able to handle high-dimensional functions and
bypass the curse of dimensionality. More layers (and/or nodes) can easily be added. For
example, the output of the neural network represented in Figure C.1 is given by

yk(x,w) =
4∑

j2=1

w2
j2,k

a2j2︷ ︸︸ ︷
h2

( 4∑
j1=1

w1
j1,j2

h1

( 2∑
i=1

w0
i,j1

xi

)
︸ ︷︷ ︸

a1j1

)
, k = 1, 2, 3,

where h1 and h2 are the activation functions chosen for the first and second hidden layers,
respectively. It has m× 4 + 4× 4 + 4× n weights.

In addition to the network’s depth and width, an important choice is the activation
functions. Each layer can have a different activation function. For the hidden layers, the
most commonly used are the rectified linear unit (ReLU) and the hyperbolic tangent (tanh).
For the output layer, the choice often depends on the function being approximated. In many
economic settings, they can be used to impose constraints. For example, I use a softplus

activation function for the dominant firm’s choice of wages to ensure they are non-negative.

Training. The neural network weights are updated with

w∗ = argmin
w

L(x;w),

where L is the loss function. The loss function is chosen by the researcher and usually
measures the distance between the actual data and model predictions. For example, a
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commonly used loss function is the mean squared error (MSE)

LMSE(x;w) =
1

N

N∑
i=1

(ŷi − yi)
2,

where N is the batch size, xi is the input of the ith data point, ŷi = NN(xi;w) is the
predicted value, and yi is the truth. In practice, the weights are updated using gradient
descent,

wnew = w + η
∂L(x;w)

∂w

where η ∈ R+ is the learning rate. η is a key hyperparameter which must be carefully chosen:
a high value can update the network too quickly and overshoot the true global minimum,
while a small value might not update the network fast enough and get stuck in a local
minimum or flat region. Convergence is achieved when the gradient is 0, meaning that there
is no change in the weights that would result in a lower loss.

To assess the performance of a neural network, it is common to plot both the training
and validation losses. The training loss is the loss calculated on the training set, a randomly
generated dataset used to update the model parameters. The validation loss is the loss
computed on the validation set, a randomly generated dataset (different than the training
set) that is not used to train the neural network. Usually, the validation loss is computed after
the optimization step. Hence, the training loss measures how well the neural network fits
the training data and the validation loss captures how well the neural network is performing
more generally, i.e. on points that were not used for training. A validation loss greater than
the training loss is usually a sign that the model is not able to generalize to points outside
of the training set (overfitting). A standard rule of thumb is to tune the neural network
architecture and hyperparameters until both losses are roughly equal.

Properties. Neural networks have become widely used due to their attractive properties.
Networks with at least one hidden layer are universal function approximators (Hornik et al.
1989), meaning they are able to approximate any continuous function to arbitrary accuracy.
Because of their inherent non-linear structure, they can represent highly complex functions
with kinks and ridges, binding constraints, non-differentiabilities, discontinuities, and dis-
crete choices. As previously discussed, they can also circumvent the curse of dimensionality
because the number of weights to estimate scales linearly with the dimensionality of the
input. Furthermore, recent advances in computing make training fast.
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C.3 Deep Reinforcement Learning

In this section, I describe the methods from reinforcement learning I use to solve the dominant
firm’s problem and the planner’s problem. More precisely, I use a modified version of the
Deep Deterministic Policy Gradient Algorithm of Lillicrap et al. (2015) and Silver et al.
(2014). Before describing this procedure, I first provide a brief overview of reinforcement
learning and actor-critic algorithms. For a more in-depth textbook treatment of these topics,
see Barto and Sutton (2018) and Szepesvari (2010).

C.3.1 Reinforcement Learning

Background. There are three broad paradigms in machine learning: supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning is used for labeled
data with a clear mapping to predefined outputs such as image classification or spam e-
mail detection. Unsupervised learning is employed for discovering patterns or structures in
unlabeled data. A widely used example is principal component analysis (PCA), a popular
method for dimensionality reduction. Finally, reinforcement learning is used to study an
agent who learns to make sequential decisions in an environment to optimize a reward. Deep
reinforcement learning refers to the use of deep neural networks in reinforcement learning
algorithms.

Setting. For ease of exposition, I borrow notation from the machine learning literature.
The canonical setting in reinforcement learning is a Markov Decision Process comprised of
a state space S, an action space A, a reward function r : S × A → R, an initial state
distribution, and Markov transition dynamics for the state. In each period, an agent in state
st ∈ S chooses an action at ∈ A. The agent’s behavior is summarized by a policy π : S → A
which can either be deterministic, π(s) = a, or stochastic, π(a|s) = Pπ(A = a, S = s).
In what follows, I restrict attention to deterministic actions because those are what the
dominant firm and the planner choose. The reward obtained from this choice is denoted
by r(st, at) and the agent’s discount factor is β ∈ (0, 1]. The agent maximizes the present
discounted value of returns, Rt :=

∑∞
k=0 β

kr(st+k, at+k). Two different values are defined:

1. the state value Vπ(s) = E[Rt|st = s] is the expected return from following π, and

2. the state-action value Qπ(s, a) = E[Rt|st = s, a] is the expected return from choosing
a in state s and then following π.
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Both formulations are equivalent,48 but the state-action value is more convenient in practice
for the reasons I discuss below. These values can be expressed as standard Bellman equations,
e.g. the recursive formulation of the state-action value is

Qπ(s, a) = r(s, a) + βEs′|s,a[Qπ(s
′, π(s′))].

The goal of reinforcement learning is to find the policy that maximizes total returns. Notice
that many problems studied in economics and related fields fit this structure. I do not
provide an exhaustive taxonomy of the growing list of methods developed to solve these types
of problems. Instead, I briefly discuss two popular branches in the model-free approach to
reinforcement learning, Q-learning and policy optimization, on which actor-critic algorithms
build.

Q-Learning. Q-learning49 is a model-free approach closely related to standard computa-
tional methods in economics that solve dynamic programs using the value function. In most
applications of reinforcement learning, value function iteration is infeasible because of the
dimensionality of the state space. The solution proposed by Q-learning is to estimate the op-
timal state-action value Q∗(s, a) using a function approximator, Q(s, a; θ) ≈ Q∗(s, a), where
θ is the vector of parameters. For example, deep Q-learning refers to the use of a (deep)
neural network to do this. There are many variants of this algorithm, but in general, the
parameters θ are updated to minimize the Bellman residuals. Importantly, Q-learning is an
off-policy algorithm, meaning that the actions used to evaluate the fit are not always optimal.
A standard approach is to use an ϵ−greedy policy: with probability ϵ, it experiments and
randomly selects an action a ∈ A, and with probability 1− ϵ, it selects the optimal action.
This exploration is key and allows the algorithm to consider points far from the optimal pol-
icy that may yield higher returns. ϵ is commonly referred to as the exploitation-exploration
parameter with a higher value implying more exploration of the policy space far from the
(current) optimal action. In many applications, it is useful to implement a decreasing sched-
ule for ϵ to facilitate convergence. Most Q-learning algorithms also use an experience replay,
a large buffer that stores previously explored experiences (state, action, reward, and future
state) to avoid correlated training samples and improve convergence.

48 In the case of stochastic actions, the relationship between the two values is

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a).

For deterministic actions, we have Vπ(s) = Qπ(s, π(s)).
49 The name is short for “learning the Q-value”.
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Policy Optimization. As opposed to value-based methods like Q-learning, policy gradient
methods parameterize the policy function. The parameters are updated using the policy
gradient theorem (Sutton et al. 1999) which provides an explicit expression for the gradient
of the parameterized policy that can be easily computed. When parameterized by a neural
network, this is equivalent to setting the loss function equal to the negative value implied by
the actions.

Actor-Critic Algorithms. Actor-critic algorithms are widely used architectures that lie
at the intersection of the value-based and policy-based approaches. Instead of focusing on
one or the other, both the policy (actor) and the state-action value (critic) are parameterized
and trained jointly. The actor selects actions by exploration and the critic evaluates these
actions by computing their expected future rewards, providing feedback to the actor. The
actor parameters are typically updated using gradient ascent in the direction suggested
by the critic thus increasing the likelihood of actions that lead to higher returns. The
critic parameters are updated to minimize a loss capturing the difference between estimated
values and actual returns. This combination of value estimation and policy optimization
allows agents to learn both what actions to take and how to improve their policy over time,
making actor-critic algorithms particularly effective for complex environments.

C.3.2 Deep Deterministic Policy Gradient

In many problems in reinforcement learning, the policy is stochastic, i.e. π(a|s) = Pπ(A =

a, S = s) is a probability distribution over the set of possible actions. However, in most
economic applications including the one in this paper, the policy is deterministic: agents
choose a single action π(s) = a. The deterministic policy gradient theorem (Silver et al.
2014) provides an expression for the gradient when the action is deterministic and is a spe-
cial case of the more general (stochastic) policy gradient theorem discussed above. Deep
Deterministic Policy Gradient (henceforth DDPG) is an actor-critic learning algorithm pro-
posed by Lillicrap et al. (2015) that can be used to solve deterministic problems with both a
continuous state space and a continuous action space. Both the state-action value Q(s, a; θQ)

and the policy π(s; θπ) are approximated with deep neural networks. The critic is updated
by minimizing the Bellman residuals and the actor is updated by minimizing the negative
value implied by the policy. Random noise is added to the policy for exploration,

a = π(s; θπ) + n,
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where n is typically normally distributed. Moreover, the authors suggest using soft target
updates to avoid instability in convergence. Copies Q′ and π′ of both neural networks are
used to compute target values and to update the neural network parameters:

θ′i = τiθi + (1− τi)θ
′
i, i ∈ {Q, π},

where τi << 1 is the weight placed on the new parameters.

C.4 Solution Method

I separately approximate the following four model objects with their own neural network:

1. NNpD approximates the dominant firm’s optimal choice of wages.

2. NNQD approximates the dominant firm’s state-action value.

3. NNV approximates the worker value.

4. NNχ′ approximates the law of motion for χ′.

Note that the worker value is standard so grid-based methods commonly used in the dynamic
discrete choice literature could also be used. However, because of the high dimensionality
of the state space, interpolation with grids is both inaccurate (since using an appropriate
amount of grid points is infeasible) and slow.

Table C.1: Neural Networks for Decentralized Equilibrium

Description Mapping Loss Depth/Width Activation Learning Rate

Firm Policy χ→ wD negative value 3 hidden layers softplus 1e-3
tanh, 128

Firm Value (χ,wD)→ QD MSE 2 hidden layers linear 1e-3
leakyrelu, 128

Worker Value (h, o, χ)→ V MSE 3 hidden layers linear 1e-3
leakyrelu, 128

Law of Motion (χ,wD)→ χ′ MSE 2 hidden layers softmax 1e-3
leakyrelu, 128

Note: All neural networks use the standard ADAM optimizer. MSE (mean squared error) is 1
N

∑
i(ŷi − yi)

2

where ŷi is the predicted value, yi is the truth, and N is the number of points in the training data. The linear
activation function is the identity f(x) = x. The softplus activation function is f(x) = ln(1 + ex). The softmax
activation function is f : Rk → (0, 1)k defined by f(x)i = exi/

∑k
j=1 e

xj .
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Table C.1 reports the neural network configurations. I choose deep (2-3 hidden layers) and
wide (128 nodes) architectures. Moreover, I use random weight initializations (He, Zhang,
Ren, and Sun 2015) for each neural network to improve convergence. For the firm’s policy, I
use the softplus activation function to ensure the wages chosen are non-negative.50 I modify
the deep deterministic policy gradient method proposed by Lillicrap et al. (2015) and Silver
et al. (2014) to solve the firm’s problem. As previously discussed in Appendix C.3.2, this
is an actor-critic algorithm that approximates both the state-action value and the policy
with neural networks. Algorithm 1 details how this is done. For each of the NT training
points, I use a Sobol sequence to sample from the unit simplex ∆3H which I then transform
using the method proposed by Blank et al. (2021) in section II.B. This method ensures
the points are well-spaced in the unit simplex. I then compute the firm profits implied by
NNpD, without needing to solve for the fixed point in χ′ discussed in Appendix C.1 since
the mapping (wD, χ) → χ′ is given by NNχ′. I use these, along with the other neural
networks, to compute the firm’s labor supply curve. I then compute the profits using target
networks NNQ′

D and NNp′D. As discussed in Appendix C.3.2, the target networks help
avoid instability in convergence. Finally, I set the loss to be the mean negative value over
all the points in the training dataset.

Algorithm 1: Training NNpD

1 Choose NT

// Generate the training data of size NT

2 for j in 1:NT do
3 Draw χj from a Sobol sequence
4 Transform χj using section II.B of Blank et al. (2021)
5 wD ← NNpD(χ

j)

6 χ′ ← NNχ′(χj, wD)

7 Compute mD from Equation (12) using (χj, χ′, wD) and NNV

8 valj ← FD(mD) +
∑

h a
h
D −

∑
h m

h
D × wh

D + βNNQ′
D(χ

′, NNp′D(χ
′)) // value

9 end
// Train NNpD

10 Update NNpD parameters to minimize loss = − 1
NT

∑
j val

j

For the neural networks approximating the firm value, I use a linear activation function.
50 In principle, there is nothing restricting firms from posting positive wages. In fact, because of the taste

shocks and the human capital dynamics, it may even be profitable to offer negative wages. Nonetheless, I
rule this out since negative wages are not observable in the data.
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The training, detailed in Algorithm 2, is very similar to the policies. The main difference is
the loss function used. As with the policy, I use target networks to facilitate convergence.
Moreover, as NNQD is also used to compute the continuation value, this is effectively equiv-
alent to doing value function iteration (VFI) with neural networks. For NNV , I use one-hot
encoding51 to handle worker origin o, a categorical variable.52 Just like with the firm values,
this amounts to doing VFI with neural networks. Finally, the neural networks for the laws
of motion use a softmax activation function to ensure the resulting slices of the aggregate
distribution sum to one.

Algorithm 2: Training NNQD

1 Choose NT

// Generate the training data of size NT

2 for j in 1:NT do
3 Draw χj from a Sobol sequence
4 Transform χj using section II.B of Blank et al. (2021)
5 wD ← NNpD(χ

j)

6 χ′
D ← NNχ′(χj, wD)

7 Compute mD from Equation (12) using (χj, χ′, wD) and NNV

8 ŷj ← NNQD(χ
j, wD) // predicted

9 yj ← FD(mD) +
∑

h a
h
D −

∑
hm

h
D × wh

D + βNNQ′
D(χ

′, NNp′D(χ
′)) // truth

10 end
// Train NNQD

11 Update NNQD parameters to minimize loss = 1
NT

∑
j((ŷ

j − yj)/yj)2

C.4.1 Individual Performance

Before tackling the full equilibrium, I verify that each of the model objects can be properly
approximated by the neural networks described above. Note that all these neural networks
are deeply interdependent. For example, in Algorithms 1 and 2 it is clear that NNpD and
NNQD depend on all the other neural networks. Hence, individually training any of them
holds the others fixed.

In Figure C.2, I train each of the neural networks individually for 50,000 epochs and plot
both the training and validation losses. For all three, the training and validation losses are

51 This is akin to dummy variables: D is coded as (1, 0, 0), P as (0, 1, 0), and N as (0, 0, 1).
52 I have also tried using three separate neural networks, each one corresponding to a different origin. I

have found this approach to work equally well when training just the worker values, albeit slightly slower.
However, when training all the neural networks jointly, it is unstable.

81



(a) NNQ (b) NNV

(c) NNχ′

Note: The vertical axis is the loss. For each neural network, I plot both the training (green) and validation
(blue) losses.

Figure C.2: Independent Training

indistinguishable, suggesting that the neural network architecture and hyperparameters are
appropriate. The losses for NNQ quickly decrease and flatten after about 30,000 epochs. In
contrast, the losses for NNV and NNχ′ have not stopped decreasing after 50,000 epochs,
indicating that the parameters have not yet converged and a better approximation is possible.
Nonetheless, for all three, the losses are very small which means the approximations are very
precise. For NNχ′, the fit is particularly impressive as the losses are almost machine epsilon.

C.4.2 Joint Training

Because of the dependence structure between the neural networks mentioned above, getting
them all to converge jointly is tricky. There are two possible approaches. The first is to train
all the neural networks jointly until they all converge. The second is to alternate between
the firm and worker problems until convergence: hold the firm neural networks constant and
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train the worker neural networks until convergence, then hold the worker neural networks
fixed and train the firm neural networks until convergence. I have found that what works
best is training them all jointly. This is not only faster, but also much more stable because it
avoids any one of the neural networks training in the wrong direction. For example, if NNV

is training holding constant an approximation of the policy NNpD that is very far from the
equilibrium wages, then NNV may converge to something that is also very far from the
equilibrium worker value function. Taking that and then feeding it into the training of the
firm’s policy and value functions may start a vicious cycle from which the algorithm can not
recover. Algorithm 3 describes the global solution method used to solve for the equilibrium.
I use the sum of all validation losses as the stopping criterion.

Algorithm 3: Solving for the equilibrium

1 Set the seed and initialize the neural networks
2 Make copies NNQ′

D, NNp′D of NNQ′
D, NNp′D iter ← 0

3 val←∞
4 while true do
5 iter ← iter + 1

// Train each NN for 1 epoch (see Algorithm 1 and Algorithm 2)

6 Train NNpD

7 Train NNQD

8 Train NNV

9 Train NNχ′

// Check for convergence

10 val← sum of validation losses
11 if val < tol then
12 break

13 end
// Update the target networks with weights τQ, τp

14 θ′Q ← τQθQ + (1− τ)θ′Q
15 θ′p ← τpθp + (1− τ)θ′p

16 end

D Estimation Appendix

D.1 Slices of objective function
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